Structuralism Reconsidered

Author(s):  
Fraser MacBride

The properties and relations that perform a role in mathematical reasoning arise from the basic relations that obtain among mathematical objects. It is in terms of these basic relations that mathematicians identify the objects they intend to study. The way in which mathematicians identify these objects has led some philosophers to draw metaphysical conclusions about their nature. These philosophers have been led to claim that mathematical objects are positions in structures or akin to positions in patterns. This article retraces their route from (relatively uncontroversial) facts about the identification of mathematical objects to high metaphysical conclusions. Beginning with the natural numbers, how are they identified? The mathematically significant properties and relations of natural numbers arise from the successor function that orders them; the natural numbers are identified simply as the objects that answer to this basic function. But the relations (or functions) that are used to identify a class of mathematical objects may often be defined over what appear to be different kinds of objects.

Author(s):  
William Enrique Poveda Fernández

RESUMENEn este artículo se analizan y discuten las ventajas y oportunidades que ofrece GeoGebra durante el proceso de resolución de problemas. En particular, se analizan y documentan las formas de razonamiento matemático exhibidas por ocho profesores de enseñanza secundaria de Costa Rica, relacionadas con la adquisición y el desarrollo de estrategias de resolución de problemas asociadas con el uso de GeoGebra. Para ello, se elaboró una propuesta de trabajo que comprende la construcción y la exploración de una representación del problema, y la formulación y la validación de conjeturas. Los resultados muestran que los profesores hicieron varias representaciones del problema, examinaron las propiedades y los atributos de los objetos matemáticos involucrados, realizaron conjeturas sobre las relaciones entre tales objetos, buscaron diferentes formas de comprobarlas basados en argumentos visuales y empíricos que proporciona GeoGebra. En general, los profesores usaron estrategias de medición de atributos de los objetos matemáticos y de examinación del rastro que deja un punto mientras se arrastra.Palabras claves: GeoGebra; Resolución de problemas; pensamiento matemático. RESUMOEste artigo analisa e discute as vantagens e oportunidades oferecidas pelo GeoGebra durante o processo de resolução de problemas. Em particular, as formas de raciocínio matemático exibidas por oito professores do ensino médio da Costa Rica, relacionadas à aquisição e desenvolvimento de estratégias de resolução de problemas associadas ao uso do GeoGebra, são analisadas e documentadas. Para isso, foi elaborada uma proposta de trabalho que inclui a construção e exploração de uma representação do problema, e a formulação e validação de conjecturas. Os resultados mostram que os professores fizeram várias representações do problema, examinaram as propriedades e atributos dos objetos matemáticos envolvidos, fizeram conjecturas sobre as relações entre esses objetos e procuraram diferentes formas de os verificar com base em argumentos visuais e empíricos fornecidos pelo GeoGebra. Em geral, os professores utilizaram estratégias para medir os atributos dos objetos matemáticos e para examinar o rasto que um ponto deixa enquanto é arrastado.Palavras-chave: GeoGebra; Resolução de problemas; pensamento matemático. ABSTRACTThis article analyzes and discusses the advantages and opportunities offered by GeoGebra during the problem-solving process. In particular, the mathematical reasoning forms exhibited by eight secondary school teachers in Costa Rica, related to the acquisition and development of problem solving strategies associated with the use of GeoGebra, are analyzed and documented. The proposal was developed that includes the elements: construction and exploration of a representation of the problem and formulation and validation of conjectures. The results show that teachers made several representations of the problem, examined the properties and attributes of the mathematical objects involved, made conjectures about the relationships between such objects, and sought different ways to check them based on visual and empirical arguments provided by GeoGebra. In general, the teachers used strategies to measure the attributes of the mathematical objects and to examine the trail that a point leaves while it is being dragged.Keywords: GeoGebra; Problem Solving; Mathematical Thinking.


Author(s):  
Nicolaas Govert de Bruijn

After millennia of mathematics we have reached a level of understanding that can be represented physically. Humankind has managed to disentangle the intricate mixture of language, metalanguage and interpretation, isolating a body of formal, abstract mathematics that can be completely verified by machines. Systems for computer-aided verification have philosophical aspects. The design and usage of such systems are influenced by the way we think about mathematics, but it also works the other way. A number of aspects of this mutual influence will be discussed in this paper. In particular, attention will be given to philosophical aspects of type-theoretical systems. These definitely call for new attitudes: throughout the twentieth century most mathematicians had been trained to think in terms of untyped sets. The word “philosophy” will be used lightheartedly. It does not refer to serious professional philosophy, but just to meditation about the way one does one’s job. What used to be called philosophy of mathematics in the past was for a large part subject oriented. Most people characterized mathematics by its subject matter, classifying it as the science of space and number. From the verification system’s point of view, however, subject matter is irrelevant. Verification is involved with the rules of mathematical reasoning, not with the subject. The picture may be a bit confused, however, by the fact that so many people consider set theory, in particular untyped set theory, as part of the language and foundation of mathematics, rather than as a particular subject treated by mathematics. The views expressed in this paper are quite personal, and can mainly be carried back to the author’s design of the Automath system in the late 1960s, where the way to look upon the meaning (philosophy) of mathematics is inspired by the usage of the unification system and vice versa. See de Bruijn 1994b for various philosophical items concerning Automath, and Nederpelt et al. 1994, de Bruin 1980, de Bruijn 1991a for general information about the Automath project. Some of the points of view given in this paper are matters of taste, but most of them were imposed by the task of letting a machine follow what we say, a machine without any knowledge of our mathematical culture and without any knowledge of physical laws.


Author(s):  
Harold Hodes

A reducibility is a relation of comparative computational complexity (which can be made precise in various non-equivalent ways) between mathematical objects of appropriate sorts. Much of recursion theory concerns such relations, initially between sets of natural numbers (in so-called classical recursion theory), but later between sets of other sorts (in so-called generalized recursion theory). This article considers only the classical setting. Also Turing first defined such a relation, now called Turing- (or just T-) reducibility; probably most logicians regard it as the most important such relation. Turing- (or T-) degrees are the units of computational complexity when comparative complexity is taken to be T-reducibility.


2017 ◽  
Vol 62 (1) ◽  
pp. 94-113 ◽  
Author(s):  
Pablo Ruano

In this article, speech verbs in Dickens’sHard Times(1854) and their translation into Spanish are analyzed. Apart from their basic function of introducing speech, these verbs can also contribute to characterization. The regular occurrence of a particular speech verb to report the direct speech of a particular character helps to create a fictional personality. Given the important role they may play, the rendering of such verbs in four Spanish versions of this novel is assessed. To do so, a corpus-based methodology has been employed. A concordancing software was used to retrieve speech verbs from the original novel, allowing their close analysis in context. Then, using an aligned parallel corpus containing the four versions, a comparison was carried out to see how they have been rendered. Evidence is provided that none of the four translations entirely preserves the characterizing value of the verbs, which may affect the way readers form impressions of characters in their minds. The use of this corpus metholodogy is thus seen to contribute to the field of literary translation studies.


2007 ◽  
Vol 91 (521) ◽  
pp. 216-226 ◽  
Author(s):  
Barry Lewis

This article sets out to explore some of the connections between two seemingly distinct mathematical objects: trigonometric functions and the integer sequences composed of the Fibonacci and Lucas numbers. It establishes that elements of Fibonacci/Lucas sequences obey identities that are closely related to traditional trigonometric identities. It then exploits this relationship by converting existing trigonometric results into corresponding Fibonacci/Lucas results. Along the way it uses mathematical tools that are not usually associated with either of these objects.


2020 ◽  
Vol 18 (2) ◽  
Author(s):  
Matti Eklund

According to a certain pluralist view in philosophy of mathematics, there are as many mathematical objects as there can coherently be. Recently, Justin Clarke-Doane has explored what consequences the analogous view on normative properties would have. What if there is a normative pluriverse? Here I address this same question. The challenge is best seen as a challenge to an important form of normative realism. I criticize the way Clarke-Doane presents the challenge. An improved challenge is presented, and the role of pluralism in this challenge is assessed.


Author(s):  
Juan Pablo Ramírez

We provide an axiomatic base for the set of natural numbers, that has been proposed as a canonical construction, and use this definition of $\mathbb N$ to find several results on finite group theory. Every finite group $G$, is well represented with a natural number $N_G$; if $N_G=N_H$ then $H,G$ are in the same isomorphism class. We have a linear order on all finite groups, that is well behaved with respect to cardinality. In fact, if $H,G$ are two finite groups such that $|H|=m<n=|G|$, then $H<\mathbb Z_n\leq G$. Internally, there is also a canonical order for the elements of any finite group $G$, and we find equivalent objects. This allows us to find the automorphisms of $G$. The Cayley table of $G$ takes canonical block form, and a minimal set of independent equations that define the group is obtained. Examples are given, using all groups with less than ten elements, to illustrate the procedure for finding all groups of $n$ elements, and we order them externally and internally. The canonical block form of the symmetry group $\Delta_4$ is given and we find its automorphisms. These results are extended to the infinite case. A real number is an infinite set of natural numbers. A real function is a set of real numbers, and a sequence of real functions $f_1,f_2,\ldots$ is well represented by a set of real numbers, also. We make brief mention on the calculus of real numbers. In general, we are able to represent mathematical objects using the smallest possible data-type. In the last section, mathematical objects of all types are well assigned to tree structures. We conclude with comments on type theory and future work on computational and physical aspects of these representations.


Author(s):  
Ya. D. Sergeyev

This article describes a recently proposed methodology that allows one to work with infinitely large and infinitely small quantities on a computer. The approach uses a number of ideas that bring it closer to modern physics, in particular, the relativity of mathematical knowledge and its dependence on the tools used by mathematicians in their studies are discussed. It is shown that the emergence of new computational tools influences the way we perceive traditional mathematical objects, and also helps to discover new interesting objects and problems. It is discussed that many difficulties and paradoxes regarding infinity do not depend on its nature, but are the result of the weakness of the traditional numeral systems used to work with infinitely large and infinitely small quantities. A numeral system is proposed that not only allows one to work with these quantities analytically in a simpler and more intuitive way, but also makes possible practical calculations on the Infinity Computer, patented in a number of countries. Examples of measuring infinite sets with the accuracy of one element are given and it is shown that the new methodology avoids the appearance of some well-known paradoxes associated with infinity. Examples of solving a number of computational problems are given and some results of teaching the described methodology in Italy and Great Britain are discussed.


1993 ◽  
Vol 58 (2) ◽  
pp. 672-687 ◽  
Author(s):  
P. T. Bateman ◽  
C. G. Jockusch ◽  
A. R. Woods

AbstractIt is shown, assuming the linear case of Schinzel's Hypothesis, that the first-order theory of the structure 〈ω; +, P〉, where P is the set of primes, is undecidable and, in fact, that multiplication of natural numbers is first-order definable in this structure. In the other direction, it is shown, from the same hypothesis, that the monadic second-order theory of 〈ω S, P〉 is decidable, where S is the successor function. The latter result is proved using a general result of A. L. Semënov on decidability of monadic theories, and a proof of Semënov's result is presented.


1967 ◽  
Vol 32 (3) ◽  
pp. 325-342 ◽  
Author(s):  
Julia Robinson

By functional equation we mean an equation of the form(1) A1 … Aκ = B1 … B1.Here the A's and B's are functions of one variable from and to the natural numbers and FG is the function obtained from F and G by composition, i.e. FG(x) = F(G(x)) for all natural numbers x. We wish to investigate finite systems of functional equations. Now if all the A's and B's of (1) are equal to the identity function I (or all equal to the zero function O), then the equation (1) is satisfied trivially. Thus, in order to make the problem of solvability of systems of equations interesting, we must have some function given which will be held fixed throughout. We take the successor function S to be this given function.


Sign in / Sign up

Export Citation Format

Share Document