Computational neurostimulation

Author(s):  
Ainslie Johnstone ◽  
James J. Bonaiuto ◽  
Sven Bestmann

Computational neurostimulation is the use of biologically grounded computational models to investigate the mechanism of action of brain stimulation and predict the impact of transcranial magnetic stimulation (TMS) on behavior in health and disease. Computational models are now widespread, and their success is incontrovertible, yet they have left a rather small footprint on the field of TMS. We highlight and discuss recent advances in models of primary motor cortex TMS, the brain region for which most models have been developed. These models provide insight into the putative, but unobservable, mechanisms through which TMS influences physiology, and help predicting the effects of different TMS applications. We discuss how these advances in computational neurostimulation provide opportunities for mechanistically understanding and predicting the impact of TMS on behavior.

2021 ◽  
Vol 11 (4) ◽  
pp. 432
Author(s):  
Fiorenzo Moscatelli ◽  
Antonietta Messina ◽  
Anna Valenzano ◽  
Vincenzo Monda ◽  
Monica Salerno ◽  
...  

Transcranial magnetic stimulation, since its introduction in 1985, has brought important innovations to the study of cortical excitability as it is a non-invasive method and, therefore, can be used both in healthy and sick subjects. Since the introduction of this cortical stimulation technique, it has been possible to deepen the neurophysiological aspects of motor activation and control. In this narrative review, we want to provide a brief overview regarding TMS as a tool to investigate changes in cortex excitability in athletes and highlight how this tool can be used to investigate the acute and chronic responses of the motor cortex in sport science. The parameters that could be used for the evaluation of cortical excitability and the relative relationship with motor coordination and muscle fatigue, will be also analyzed. Repetitive physical training is generally considered as a principal strategy for acquiring a motor skill, and this process can elicit cortical motor representational changes referred to as use-dependent plasticity. In training settings, physical practice combined with the observation of target movements can enhance cortical excitability and facilitate the process of learning. The data to date suggest that TMS is a valid technique to investigate the changes in motor cortex excitability in trained and untrained subjects. Recently, interest in the possible ergogenic effect of non-invasive brain stimulation in sport is growing and therefore in the future it could be useful to conduct new experiments to evaluate the impact on learning and motor performance of these techniques.


2021 ◽  
Author(s):  
S.S. Ananiev ◽  
D.A. Pavlov ◽  
R.N. Yakupov ◽  
V.A. Golodnova ◽  
M.V. Balykin

The study was conducted on 22 healthy men aged 18-23 years. The primary motor cortex innervating the lower limb was stimulated with transcranial magnetic stimulation. Using transcutaneous electrical stimulation of the spinal cord, evoked motor responses of the muscles of the lower extremities were initiated when electrodes were applied cutaneous between the spinous processes in the Th11-Th12 projection. Research protocol: Determination of the thresholds of BMO of the muscles of the lower extremities during TESCS; determination of the BMO threshold of the TA muscle in TMS; determination of the thresholds of the BMO of the muscles of the lower extremities during TESCS against the background of 80% and 90% TMS. It was found that magnetic stimulation of the motor cortex of the brain leads to an increase in the excitability of the neural structures of the lumbar thickening of the spinal cord and an improvement in neuromuscular interactions. Key words: transcranial magnetic stimulation, transcutaneous electrical stimulation of the spinal cord, neural networks, excitability, neuromuscular interactions.


NeuroImage ◽  
2012 ◽  
Vol 62 (1) ◽  
pp. 500-509 ◽  
Author(s):  
Sergiu Groppa ◽  
Nicole Werner-Petroll ◽  
Alexander Münchau ◽  
Günther Deuschl ◽  
Matthew F.S. Ruschworth ◽  
...  

2005 ◽  
Vol 11 (3) ◽  
pp. 316-321 ◽  
Author(s):  
J Liepert ◽  
D Mingers ◽  
C Heesen ◽  
T Bäumer ◽  
C Weiller

We investigated electrophysiological correlates of fatigue in patients with multiple sclerosis (MS). Transcranial magnetic stimulation (TMS) was used to explore motor excitability in three groups of subjects: MS patients with fatigue (MS-F), MS patients without fatigue (MS-NF) and healthy control subjects. All participants had to perform a fatiguing hand-grip exercise. TMS was performed prior to and after the exercise. Prior to the motor task, MS-F patients had less inhibition in the primary motor cortex compared to both other groups. Postexercise, intracortical inhibition was still reduced in the MS-F patients compared to the MS-NF patients. In MS-F patients the postexercise time interval for normalization of the motor threshold was correlated with the fatigue severity. We conclude that MS patients with fatigue have an impairment of inhibitory circuits in their primary motor cortex. The results also indicate that fatigue severity is associated with an exercise-induced reduction of membrane excitability.


Sign in / Sign up

Export Citation Format

Share Document