scholarly journals Effects of changes in packed cell volume on the specific heat capacity of blood: implications for studies measuring heat exchange in extracorporeal circuits

2000 ◽  
Vol 84 (1) ◽  
pp. 28-32 ◽  
Author(s):  
A S Blake ◽  
G W Petley ◽  
C D Deakin
Metrologiya ◽  
2020 ◽  
pp. 43-52
Author(s):  
Tatiana A. Kompan ◽  
Viktoriya V. Vlasova ◽  
Valentin I. Kulagin

The influence of the gas presence in calorimeter on the result of measuring of thermal capacity is considered. The feature of the case is the unavoidable change of the gas mass during measuring procedure. The correct expression for the value of amendment is obtained, and uncertainty is evaluated for the calorimeter КА-С4 that serves as the standard of the unit of heat capacity.


2021 ◽  
Author(s):  
Eloisa Di Sipio ◽  
Enrico Garbin ◽  
Laura Fedele ◽  
Davide Menegazzo ◽  
Ludovico Mascarin ◽  
...  

<p>In shallow geothermal systems, especially ground source heat pumps (GSHP), cementitious grouts play a decisive role in guaranteeing an efficient heat transfer between the probe and the surrounding ground. Several studies have been devoted to understand the effect of different additives (silica sand, graphite, fluorspar, glass and fly ash …) in improving especially the thermal conductivity of such mixtures, maintaining at the same time physical properties as viscosity and workability suitable for in situ application. In fact, when continuous operation mode is running, thermal conductivity shows a positive effect on the mean heat exchange rate of vertical borehole heat exchangers (BHE). However, when an intermittent operation mode is selected, the BHE performance improves when a high thermal conductivity is coupled with a high specific heat capacity.</p><p>This research focus on assessing the contribution of two specific thermal additives (silica sand and molybdenum disulphide powder) to the thermal properties’ improvements of a specific commercial cementitious grout. These components are added in different proportion to the grout, up to the creation of 6 different mixtures. For each mixture 3 specimens are prepared, in order to perform the thermo-physical analyses. In addition, other 3 commercial grouts are considered. A total of 10 mixtures, leading to the creation of 30 specimens, have been analyzed. Then, thermal conductivity, thermal diffusivity and specific heat capacity of each specimen measured in anhydrous and saturated conditions are considered.</p><p>The commercial grouts prepared as stated by the producers show, as expected, a minimum variation of their thermal properties in wet and anhydrous conditions. Instead, when the additives are used, a noticeable improvement of the thermal properties is observed in saturated conditions, where the effect of silica sand seems dominant. The best thermal properties improvement obtained by combining the two additives is also considered.</p><p>However, the grouts suitability to be easily managed on site must be considered because, even if the new mixtures show a general gain of the thermal properties, these can be difficult to apply going from laboratory to full scale.</p><p>Anyway, the characterization of the grouts thermal properties based on composition and saturation variations is important not only in numerical simulations, but also in analytical approaches, typical of the heat exchange probe fields sizing processes. In fact, the cementitious grouts play a key role in determining the shallow geothermal systems efficiency in transient mode operation, often neglected by sizing programs. In fact, those characterized by better thermal performances will contribute to the reduction of the borehole thermal resistances, interposed in the heat exchange processes between the heat transfer fluid and the ground. Finally, this research contributes to fill the gap between numerical simulation and experimental data, providing real data to be used as database for further numerical modelling analysis improvement.</p><p> </p><p>GEO4CIVHIC project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No. 792355.</p>


2019 ◽  
Vol 15 ◽  
Author(s):  
Andaç Batur Çolak ◽  
Oğuzhan Yıldız ◽  
Mustafa Bayrak ◽  
Ali Celen ◽  
Ahmet Selim Dalkılıç ◽  
...  

Background: Researchers working in the field of nanofluid have done many studies on the thermophysical properties of nanofluids. Among these studies, the number of studies on specific heat are rather limited. In the study of the heat transfer performance of nanofluids, it is necessary to increase the number of specific heat studies, whose subject is one of the important thermophysical properties. Objective: The authors aimed to measure the specific heat values of Al2O3/water, Cu/water nanofluids and Al2O3-Cu/water hybrid nanofluids using the DTA method, and compare the results with those frequently used in the literature. In addition, this study focuses on the effect of temperature and volume concentration on specific heat. Method: The two-step method was used in the preparation of nanofluids. The pure water selected as the base fluid was mixed with the Al2O3 and Cu nanoparticles and Arabic Gum as the surfactant, firstly mixed in the magnetic stirrer for half an hour. It was then homogenized for 6 hours in the ultrasonic homogenizer. Results: After the experiments, the specific heat of nanofluids and hybrid nanofluid were compared and the temperature and volume concentration of specific heat were investigated. Then, the experimental results obtained for all three fluids were compared with the two frequently used correlations in the literature. Conclusion: Specific heat capacity increased with increasing temperature, and decreased with increasing volume concentration for three tested nanofluids. Cu/water has the lowest specific heat capacity among all tested fluids. Experimental specific heat capacity measurement results are compared by using the models developed by Pak and Cho and Xuan and Roetzel. According to experimental results, these correlations can predict experimental results within the range of ±1%.


Author(s):  
Chandrakant Sarode ◽  
Sachin Yeole ◽  
Ganesh Chaudhari ◽  
Govinda Waghulde ◽  
Gaurav Gupta

Aims: To develop an efficient protocol, which involves an elegant exploration of the catalytic potential of both the room temperature and surfactant ionic liquids towards the synthesis of biologically important derivatives of 2-aminothiazole. Objective: Specific heat capacity data as a function of temperature for the synthesized 2- aminothiazole derivatives has been advanced by exploring their thermal profiles. Method: The thermal gravimetry analysis and differential scanning calorimetry techniques are used systematically. Results: The present strategy could prove to be a useful general strategy for researchers working in the field of surfactants and surfactant based ionic liquids towards their exploration in organic synthesis. In addition to that, effect of electronic parameters on the melting temperature of the corresponding 2-aminothiazole has been demonstrated with the help of thermal analysis. Specific heat capacity data as a function of temperature for the synthesized 2-aminothiazole derivatives has also been reported. Conclusion: Melting behavior of the synthesized 2-aminothiazole derivatives is to be described on the basis of electronic effects with the help of thermal analysis. Additionally, the specific heat capacity data can be helpful to the chemists, those are engaged in chemical modelling as well as docking studies. Furthermore, the data also helps to determine valuable thermodynamic parameters such as entropy and enthalpy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Abayomi A. Akinwande ◽  
Adeolu A. Adediran ◽  
Oluwatosin A. Balogun ◽  
Oluwaseyi S. Olusoju ◽  
Olanrewaju S. Adesina

AbstractIn a bid to develop paper bricks as alternative masonry units, unmodified banana fibers (UMBF) and alkaline (1 Molar aqueous sodium hydroxide) modified banana fibers (AMBF), fine sand, and ordinary Portland cement were blended with waste paper pulp. The fibers were introduced in varying proportions of 0, 0.5, 1.0 1.5, 2.0, and 2.5 wt% (by weight of the pulp) and curing was done for 28 and 56 days. Properties such as water and moisture absorption, compressive, flexural, and splitting tensile strengths, thermal conductivity, and specific heat capacity were appraised. The outcome of the examinations carried out revealed that water absorption rose with fiber loading while AMBF reinforced samples absorbed lesser water volume than UMBF reinforced samples; a feat occasioned by alkaline treatment of banana fiber. Moisture absorption increased with paper bricks doped with UMBF, while in the case of AMBF-paper bricks, property value was noted to depreciate with increment in AMBF proportion. Fiber loading resulted in improvement of compressive, flexural, and splitting tensile strengths and it was noted that AMBF reinforced samples performed better. The result of the thermal test showed that incorporation of UMBF led to depreciation in thermal conductivity while AMBF infusion in the bricks initiated increment in value. Opposite behaviour was observed for specific heat capacity as UMBF enhanced heat capacity while AMBF led to depreciation. Experimental trend analysis carried out indicates that curing length and alkaline modification of fiber were effective in maximizing the properties of paperbricks for masonry construction.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 703
Author(s):  
Zhao Li ◽  
Liu Cui ◽  
Baorang Li ◽  
Xiaoze Du

The effects of SiO2 nanoparticles on the heat storage properties of Solar Salt (NaNO3-KNO3) are studied using experimental and molecular dynamics (MD) simulations. The experiment results show the specific heat capacity of the molten salt-based nanofluids is higher than that of the pure base salt. We focus on the inference regarding the possible mechanisms behind the enhancement of the specific heat capacity which are considered more acceptable by the majority of researchers, the energy and force in the system are analyzed by MD simulations. The results demonstrate that the higher specific heat capacity of the nanoparticle is not the reason leading to the heat storage enhancement. Additionally, the analysis of potential energy and system configuration shows that the other possible mechanisms (i.e., interfacial thermal resistance theory and compressed layer theory) are only superficial. The forces between the nanoparticle atoms and base salt ions construct the constraint of the base salt ions, further forms the interfacial thermal resistance, and the compressed layer around the nanoparticle. This constraint has a more stable state and requires more energy to deform it, leading to the improvement of the heat storage property of nanofluids. Our findings uncover the mechanisms of specific heat capacity enhancement and guide the preparation of molten salt-based nanofluids.


2021 ◽  
pp. 116890
Author(s):  
Humphrey Adun ◽  
Ifeoluwa Wole-Osho ◽  
Eric C. Okonkwo ◽  
Doga Kavaz ◽  
Mustafa Dagbasi

2004 ◽  
Vol 8 (4) ◽  
pp. 706-716 ◽  
Author(s):  
K. Rankinen ◽  
T. Karvonen ◽  
D. Butterfield

Abstract. Microbial processes in soil are moisture, nutrient and temperature dependent and, consequently, accurate calculation of soil temperature is important for modelling nitrogen processes. Microbial activity in soil occurs even at sub-zero temperatures so that, in northern latitudes, a method to calculate soil temperature under snow cover and in frozen soils is required. This paper describes a new and simple model to calculate daily values for soil temperature at various depths in both frozen and unfrozen soils. The model requires four parameters: average soil thermal conductivity, specific heat capacity of soil, specific heat capacity due to freezing and thawing and an empirical snow parameter. Precipitation, air temperature and snow depth (measured or calculated) are needed as input variables. The proposed model was applied to five sites in different parts of Finland representing different climates and soil types. Observed soil temperatures at depths of 20 and 50 cm (September 1981–August 1990) were used for model calibration. The calibrated model was then tested using observed soil temperatures from September 1990 to August 2001. R2-values of the calibration period varied between 0.87 and 0.96 at a depth of 20 cm and between 0.78 and 0.97 at 50 cm. R2-values of the testing period were between 0.87 and 0.94 at a depth of 20cm, and between 0.80 and 0.98 at 50cm. Thus, despite the simplifications made, the model was able to simulate soil temperature at these study sites. This simple model simulates soil temperature well in the uppermost soil layers where most of the nitrogen processes occur. The small number of parameters required means that the model is suitable for addition to catchment scale models. Keywords: soil temperature, snow model


Sign in / Sign up

Export Citation Format

Share Document