Development of the room temperature protocol based on room temperature ionic liquids and surfactant ionic liquids for the synthesis of derivatives of 2-amino-thiazoles and thermo-physical analysis of the synthesized derivatives using TGA-DSC.

Author(s):  
Chandrakant Sarode ◽  
Sachin Yeole ◽  
Ganesh Chaudhari ◽  
Govinda Waghulde ◽  
Gaurav Gupta

Aims: To develop an efficient protocol, which involves an elegant exploration of the catalytic potential of both the room temperature and surfactant ionic liquids towards the synthesis of biologically important derivatives of 2-aminothiazole. Objective: Specific heat capacity data as a function of temperature for the synthesized 2- aminothiazole derivatives has been advanced by exploring their thermal profiles. Method: The thermal gravimetry analysis and differential scanning calorimetry techniques are used systematically. Results: The present strategy could prove to be a useful general strategy for researchers working in the field of surfactants and surfactant based ionic liquids towards their exploration in organic synthesis. In addition to that, effect of electronic parameters on the melting temperature of the corresponding 2-aminothiazole has been demonstrated with the help of thermal analysis. Specific heat capacity data as a function of temperature for the synthesized 2-aminothiazole derivatives has also been reported. Conclusion: Melting behavior of the synthesized 2-aminothiazole derivatives is to be described on the basis of electronic effects with the help of thermal analysis. Additionally, the specific heat capacity data can be helpful to the chemists, those are engaged in chemical modelling as well as docking studies. Furthermore, the data also helps to determine valuable thermodynamic parameters such as entropy and enthalpy.

2008 ◽  
Vol 07 (04n05) ◽  
pp. 229-233 ◽  
Author(s):  
S. LAZZEZ ◽  
K. BOUBAKER BEN MAHMOUD ◽  
M. AMLOUK

ZnIn 2 S 4 nanofilms were grown on In 2 S 3 substrates. The band gap of ZnIn 2 S 4 barriers was approximately 2.8 eV at room temperature. The morphology and structure of the obtained nanofilms were already investigated via transmission electron microscope (TEM), scanning electron microscope (SEM) and X-ray diffraction analyses.1,2 In this paper, thermal analyses are performed via a photothermal technique, which has been used to indirectly evaluate the specific heat capacity of the obtained Zn -doped nanofilms. The yielded value for an optimal zinc-to-indium ratio, x (0.33), at the mean room temperature (T∞ = 301 K ), was Cs ≈ 411.5 J K -1 kg -1.


2011 ◽  
Vol 194-196 ◽  
pp. 359-362
Author(s):  
Gui Hua Hou ◽  
Zhan Hong Wang ◽  
Yui Chi Cui

A new idea for improving heat fade performance of organic based friction materials was invented; the method is to dope high specific heat material to the matrix for increasing the specific heat capacity of matrix. In this paper, selecting mullite as additive, organic based friction samples doping mullite were prepared by thermoforming methods, the specific heat of samples were analyzed by TG-DSC, and its friction and wear were tested by GB/T 5764-1998 in China. The results show that doping mullite to matrix can dramatically improve the heat fade performance of organic based friction materials, the friction coefficient of samples can keep steady among 0.3-0.4 when the test temperature is from room temperature to 350°C,while the friction coefficient of the reference samples without mullite decline from 0.38 to 0.19.


2021 ◽  
Vol 37 (6) ◽  
pp. 1496-1500
Author(s):  
Narendra S. Joshi ◽  
Govinda P. Waghulde ◽  
Gaurav R. Gupta

Edible vegetable oils were gelled by using N-(2-aminoethyl)-oleamide. Oils in their free state were subjected to differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) analysis. The gels of these oils were prepared by using N-(2-aminoethyl)-oleamide as gelator and similar thermal analysis of the gels was carried out. The thermal analysis data obtained was used to determine specific heat capacity at constant pressure (Cp). The values were compared with the reported values of heat capacities. It is observed that the thermal properties and transitions of oils and gels, specific heat capacity is helpful parameter to understand the fundamentals of gels and gelation strategies.


2020 ◽  
Vol 317 ◽  
pp. 114020 ◽  
Author(s):  
Elena Ionela Cherecheş ◽  
Jose I. Prado ◽  
Constanta Ibanescu ◽  
Maricel Danu ◽  
Alina Adriana Minea ◽  
...  

Author(s):  
Binh T. Hoang ◽  
Austin Roth ◽  
Adriana Druma ◽  
Mallika Keralapura ◽  
Sang-Joon John Lee

Tissue-mimicking materials (TMM) are often used as surrogates for human tissue when developing prospective treatments such as thermal ablation of tumors. Localized heating or ablation may be applied by methods including high-intensity focused ultrasound (HIFU), radio frequency (RF), microwave, and laser treatment. In such methods, confining the heated region to a narrow target is an important concern for minimizing collateral damage to surrounding healthy tissue. Mechanical compression can potentially assist in confining heat near a target region by constricting microvascular blood flow. However, characterization of the effects of compression on thermal properties of the tissue itself (apart from microvasculature) is needed for accurate modeling of heat transfer. Accordingly this study presents a method and material characterization results that quantify the extent to which mechanical compression alters thermal conductivity, specific heat capacity, and thermal diffusivity of a polyacrylamide-based TMM. Cylindrical test specimens were cast from polyacrylamide material with diameter of 50 mm and height of 45 mm. Compression was applied using custom apparatus for applying prescribed uniaxial displacement, with a modular configuration for testing under ambient temperature as well as on a hot plate. Compression force at room temperature was measured with a load cell that was positioned in-line between compression plates. Prescribed heat flux was delivered based on power input, as quantified with the use of a reference sample in a thermal resistance network. Temperature was measured by an array of thermocouples. Software simulations were performed using finite element analysis (FEA) for structural deformation and computational fluid dynamics (CFD) for heat transfer under the combined effects of conduction and convection. The simulations provided estimates of deformed shape and thermal losses that were compared to experimental measurements. Mechanical stress-strain tests using three TMM replicate specimens at room temperature showed a linear stress-strain relationship from approximately 2% to 14% strain and a compressive modulus of elasticity ranging from 7.56 kPa to 12.7 kPa. Distributed temperature measurements under an imposed heat flux resulted in thermal conductivity between 0.89 W/(m·K) and 1.04 W/(m·K), specific heat capacity between 5590 J/(kg·K) and 6720 J/(kg·K) and thermal diffusivity between 1.29 × 10−7 m 2 /s to 1.71 × 10−7 m2/ s. Viscoelastic effects were observed to reach steady state after approximately 20 seconds, with full elastic recovery upon unloading. Thermal conductivity and thermal diffusivity were observed to decrease under mechanical compression, while specific heat capacity was observed to increase. The results affirm that thermal properties of tissue-mimicking material can be altered by mechanical compression. These findings can be applied to future investigation of temperature distribution during localized ablation by methods such as HIFU, and can be extended to refined material modeling of perfused tissue under compression.


2019 ◽  
Vol 15 ◽  
Author(s):  
Andaç Batur Çolak ◽  
Oğuzhan Yıldız ◽  
Mustafa Bayrak ◽  
Ali Celen ◽  
Ahmet Selim Dalkılıç ◽  
...  

Background: Researchers working in the field of nanofluid have done many studies on the thermophysical properties of nanofluids. Among these studies, the number of studies on specific heat are rather limited. In the study of the heat transfer performance of nanofluids, it is necessary to increase the number of specific heat studies, whose subject is one of the important thermophysical properties. Objective: The authors aimed to measure the specific heat values of Al2O3/water, Cu/water nanofluids and Al2O3-Cu/water hybrid nanofluids using the DTA method, and compare the results with those frequently used in the literature. In addition, this study focuses on the effect of temperature and volume concentration on specific heat. Method: The two-step method was used in the preparation of nanofluids. The pure water selected as the base fluid was mixed with the Al2O3 and Cu nanoparticles and Arabic Gum as the surfactant, firstly mixed in the magnetic stirrer for half an hour. It was then homogenized for 6 hours in the ultrasonic homogenizer. Results: After the experiments, the specific heat of nanofluids and hybrid nanofluid were compared and the temperature and volume concentration of specific heat were investigated. Then, the experimental results obtained for all three fluids were compared with the two frequently used correlations in the literature. Conclusion: Specific heat capacity increased with increasing temperature, and decreased with increasing volume concentration for three tested nanofluids. Cu/water has the lowest specific heat capacity among all tested fluids. Experimental specific heat capacity measurement results are compared by using the models developed by Pak and Cho and Xuan and Roetzel. According to experimental results, these correlations can predict experimental results within the range of ±1%.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Abayomi A. Akinwande ◽  
Adeolu A. Adediran ◽  
Oluwatosin A. Balogun ◽  
Oluwaseyi S. Olusoju ◽  
Olanrewaju S. Adesina

AbstractIn a bid to develop paper bricks as alternative masonry units, unmodified banana fibers (UMBF) and alkaline (1 Molar aqueous sodium hydroxide) modified banana fibers (AMBF), fine sand, and ordinary Portland cement were blended with waste paper pulp. The fibers were introduced in varying proportions of 0, 0.5, 1.0 1.5, 2.0, and 2.5 wt% (by weight of the pulp) and curing was done for 28 and 56 days. Properties such as water and moisture absorption, compressive, flexural, and splitting tensile strengths, thermal conductivity, and specific heat capacity were appraised. The outcome of the examinations carried out revealed that water absorption rose with fiber loading while AMBF reinforced samples absorbed lesser water volume than UMBF reinforced samples; a feat occasioned by alkaline treatment of banana fiber. Moisture absorption increased with paper bricks doped with UMBF, while in the case of AMBF-paper bricks, property value was noted to depreciate with increment in AMBF proportion. Fiber loading resulted in improvement of compressive, flexural, and splitting tensile strengths and it was noted that AMBF reinforced samples performed better. The result of the thermal test showed that incorporation of UMBF led to depreciation in thermal conductivity while AMBF infusion in the bricks initiated increment in value. Opposite behaviour was observed for specific heat capacity as UMBF enhanced heat capacity while AMBF led to depreciation. Experimental trend analysis carried out indicates that curing length and alkaline modification of fiber were effective in maximizing the properties of paperbricks for masonry construction.


Sign in / Sign up

Export Citation Format

Share Document