scholarly journals Effects of SiO2 Nanoparticle Dispersion on The Heat Storage Property of the Solar Salt for Solar Power Applications

Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 703
Author(s):  
Zhao Li ◽  
Liu Cui ◽  
Baorang Li ◽  
Xiaoze Du

The effects of SiO2 nanoparticles on the heat storage properties of Solar Salt (NaNO3-KNO3) are studied using experimental and molecular dynamics (MD) simulations. The experiment results show the specific heat capacity of the molten salt-based nanofluids is higher than that of the pure base salt. We focus on the inference regarding the possible mechanisms behind the enhancement of the specific heat capacity which are considered more acceptable by the majority of researchers, the energy and force in the system are analyzed by MD simulations. The results demonstrate that the higher specific heat capacity of the nanoparticle is not the reason leading to the heat storage enhancement. Additionally, the analysis of potential energy and system configuration shows that the other possible mechanisms (i.e., interfacial thermal resistance theory and compressed layer theory) are only superficial. The forces between the nanoparticle atoms and base salt ions construct the constraint of the base salt ions, further forms the interfacial thermal resistance, and the compressed layer around the nanoparticle. This constraint has a more stable state and requires more energy to deform it, leading to the improvement of the heat storage property of nanofluids. Our findings uncover the mechanisms of specific heat capacity enhancement and guide the preparation of molten salt-based nanofluids.

2016 ◽  
Vol 835 ◽  
pp. 542-546
Author(s):  
Veronika Šípková ◽  
David Bujdoš ◽  
Martina Vodičková

The paper is aimed at storing heat with gravel. During testing, we used various kinds of recycled aggregates, were studied their characteristics and suitability for ground heat storage. The most important feature is the specific heat capacity which was measured through own construction of the calorimeter. The construction of the calorimeter and measured results are summarized in this paper.


2014 ◽  
Vol 9 (1) ◽  
pp. 582 ◽  
Author(s):  
Patricia Andreu-Cabedo ◽  
Rosa Mondragon ◽  
Leonor Hernandez ◽  
Raul Martinez-Cuenca ◽  
Luis Cabedo ◽  
...  

2019 ◽  
Vol 33 (10) ◽  
pp. 1950088 ◽  
Author(s):  
Xiandai Cui ◽  
Jiaoqun Zhu ◽  
Hong Xu ◽  
Xiaomin Cheng ◽  
Weibing Zhou

Thermophysical properties of phase change material NaCl and KCl were calculated using molecular dynamics (MD) simulations and a recent EIM interatomic potential. Density, thermal expansion coefficient, specific heat capacity were computed using equilibrium MD (EMD) simulations. The results are very close to the experimental values. The thermal conductivity was computed using two non-equilibrium MD (NEMD) methods and the results were compared with the experimental data. They appear to be relatively reasonable. Binary NaCl/KCl systems have also been investigated. The specific heat capacity with different compositions are calculated. They are very close with recent experimental results.


2021 ◽  
Vol 881 ◽  
pp. 87-94
Author(s):  
Jin Hua Chen

Reducing the melting point, in creasing the thermal stability limit, and enhancing the specific heat capacity of molten salt are the research hotspots in the field of medium and high temperature energy storage in recent years. From the perspectives of the melting point, thermal stability limit, and specific heat capacity of nitrates, we summarize the melting point, thermal stability limit, and specific heat capacity enhancement of molten salts with different compositions and ratios. The melting points of molten salt with different compositions and ratios are compared. Furthermore, the enhancing effect of various nanomaterials on molten salt is elucidated. The application of nitrate molten salt is also summarized to provide a reference for the research and application of novel molten salts. Keywords: Nitrate Molten Salt; Melting Point; Thermal Stability Limit; Specific Heat Capacity; Application


Author(s):  
Zhao Li ◽  
Liu Cui ◽  
B. R. Li ◽  
xiaoze du

The enhancement of the specific heat capacity of molten salt-based nanofluid is investigated via molecular dynamics (MD) simulations. The results show the addition of the nanoparticle indeed enhances the specific...


2019 ◽  
Vol 15 ◽  
Author(s):  
Andaç Batur Çolak ◽  
Oğuzhan Yıldız ◽  
Mustafa Bayrak ◽  
Ali Celen ◽  
Ahmet Selim Dalkılıç ◽  
...  

Background: Researchers working in the field of nanofluid have done many studies on the thermophysical properties of nanofluids. Among these studies, the number of studies on specific heat are rather limited. In the study of the heat transfer performance of nanofluids, it is necessary to increase the number of specific heat studies, whose subject is one of the important thermophysical properties. Objective: The authors aimed to measure the specific heat values of Al2O3/water, Cu/water nanofluids and Al2O3-Cu/water hybrid nanofluids using the DTA method, and compare the results with those frequently used in the literature. In addition, this study focuses on the effect of temperature and volume concentration on specific heat. Method: The two-step method was used in the preparation of nanofluids. The pure water selected as the base fluid was mixed with the Al2O3 and Cu nanoparticles and Arabic Gum as the surfactant, firstly mixed in the magnetic stirrer for half an hour. It was then homogenized for 6 hours in the ultrasonic homogenizer. Results: After the experiments, the specific heat of nanofluids and hybrid nanofluid were compared and the temperature and volume concentration of specific heat were investigated. Then, the experimental results obtained for all three fluids were compared with the two frequently used correlations in the literature. Conclusion: Specific heat capacity increased with increasing temperature, and decreased with increasing volume concentration for three tested nanofluids. Cu/water has the lowest specific heat capacity among all tested fluids. Experimental specific heat capacity measurement results are compared by using the models developed by Pak and Cho and Xuan and Roetzel. According to experimental results, these correlations can predict experimental results within the range of ±1%.


Author(s):  
Chandrakant Sarode ◽  
Sachin Yeole ◽  
Ganesh Chaudhari ◽  
Govinda Waghulde ◽  
Gaurav Gupta

Aims: To develop an efficient protocol, which involves an elegant exploration of the catalytic potential of both the room temperature and surfactant ionic liquids towards the synthesis of biologically important derivatives of 2-aminothiazole. Objective: Specific heat capacity data as a function of temperature for the synthesized 2- aminothiazole derivatives has been advanced by exploring their thermal profiles. Method: The thermal gravimetry analysis and differential scanning calorimetry techniques are used systematically. Results: The present strategy could prove to be a useful general strategy for researchers working in the field of surfactants and surfactant based ionic liquids towards their exploration in organic synthesis. In addition to that, effect of electronic parameters on the melting temperature of the corresponding 2-aminothiazole has been demonstrated with the help of thermal analysis. Specific heat capacity data as a function of temperature for the synthesized 2-aminothiazole derivatives has also been reported. Conclusion: Melting behavior of the synthesized 2-aminothiazole derivatives is to be described on the basis of electronic effects with the help of thermal analysis. Additionally, the specific heat capacity data can be helpful to the chemists, those are engaged in chemical modelling as well as docking studies. Furthermore, the data also helps to determine valuable thermodynamic parameters such as entropy and enthalpy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Abayomi A. Akinwande ◽  
Adeolu A. Adediran ◽  
Oluwatosin A. Balogun ◽  
Oluwaseyi S. Olusoju ◽  
Olanrewaju S. Adesina

AbstractIn a bid to develop paper bricks as alternative masonry units, unmodified banana fibers (UMBF) and alkaline (1 Molar aqueous sodium hydroxide) modified banana fibers (AMBF), fine sand, and ordinary Portland cement were blended with waste paper pulp. The fibers were introduced in varying proportions of 0, 0.5, 1.0 1.5, 2.0, and 2.5 wt% (by weight of the pulp) and curing was done for 28 and 56 days. Properties such as water and moisture absorption, compressive, flexural, and splitting tensile strengths, thermal conductivity, and specific heat capacity were appraised. The outcome of the examinations carried out revealed that water absorption rose with fiber loading while AMBF reinforced samples absorbed lesser water volume than UMBF reinforced samples; a feat occasioned by alkaline treatment of banana fiber. Moisture absorption increased with paper bricks doped with UMBF, while in the case of AMBF-paper bricks, property value was noted to depreciate with increment in AMBF proportion. Fiber loading resulted in improvement of compressive, flexural, and splitting tensile strengths and it was noted that AMBF reinforced samples performed better. The result of the thermal test showed that incorporation of UMBF led to depreciation in thermal conductivity while AMBF infusion in the bricks initiated increment in value. Opposite behaviour was observed for specific heat capacity as UMBF enhanced heat capacity while AMBF led to depreciation. Experimental trend analysis carried out indicates that curing length and alkaline modification of fiber were effective in maximizing the properties of paperbricks for masonry construction.


2021 ◽  
pp. 116890
Author(s):  
Humphrey Adun ◽  
Ifeoluwa Wole-Osho ◽  
Eric C. Okonkwo ◽  
Doga Kavaz ◽  
Mustafa Dagbasi

Sign in / Sign up

Export Citation Format

Share Document