Proteinase Inhibitor II Gene Expression Induced by Electrical Stimulation and Control of Photosynthetic Activity in Tomato Plants

2005 ◽  
Vol 22 (2) ◽  
pp. 227-243 ◽  
Author(s):  
Tatiana Y. Kostrominova ◽  
Douglas E. Dow ◽  
Robert G. Dennis ◽  
Richard A. Miller ◽  
John A. Faulkner

Loss of innervation in skeletal muscles leads to degeneration, atrophy, and loss of force. These dramatic changes are reflected in modifications of the mRNA expression of a large number of genes. Our goal was to clarify the broad spectrum of molecular events associated with long-term denervation of skeletal muscles. A microarray study compared gene expression profiles of 2-mo denervated and control extensor digitorum longus (EDL) muscles from 6-mo-old rats. The study identified 121 genes with increased and 7 genes with decreased mRNA expression. The expression of 107 of these genes had not been identified previously as changed after denervation. Many of the genes identified were genes that are highly expressed in skeletal muscles during embryonic development, downregulated in adults, and upregulated after denervation of muscle fibers. Electrical stimulation of denervated muscles preserved muscle mass and maximal force at levels similar to those in the control muscles. To understand the processes underlying the effect of electrical stimulation on denervated skeletal muscles, mRNA and protein expression of a number of genes, identified by the microarray study, was compared. The hypothesis was that loss of nerve action potentials and muscle contractions after denervation play the major roles in upregulation of gene expression in skeletal muscles. With electrical stimulation of denervated muscles, the expression levels for these genes were significantly downregulated, consistent with the hypothesis that loss of action potentials and/or contractions contribute to the alterations in gene expression in denervated skeletal muscles.


Planta ◽  
1988 ◽  
Vol 174 (1) ◽  
pp. 84-89 ◽  
Author(s):  
Hugo Pe�a-Cortes ◽  
Jos� Sanchez-Serrano ◽  
Mario Rocha-Sosa ◽  
Lothar Willmitzer

1998 ◽  
Vol 353 (1374) ◽  
pp. 1495-1510 ◽  
Author(s):  
Dianna Bowles

The wound response of tomato plants has been extensively studied, and provides a useful model to understand signal transduction events leading from injury to marker gene expression. The principal markers that have been used in these studies are genes encoding proteinase inhibitor (pin) proteins. Activation of pin genes occurs in the wounded leaf and in distant unwounded leaves of the plant. This paper reviews current understanding of signalling pathways in the wounded leaf, and in the systemically responding unwounded leaves. First, the nature of known elicitors and their potential roles in planta are discussed, in particular, oligogalacturonides, jasmonates and the peptide signal, systemin. Inhibitors of wound–induced proteinase inhibitor (pin) expression are also reviewed, with particular reference to phenolics, sulphydryl reagents and fusicoccin. In each section, results obtained from the bioassay are considered within the wider context of data from mutants and from transgenic plants with altered levels of putative signalling components. Following this introduction, current models for pin gene regulation are described and discussed, together with a summary for the involvement of phosphorylation–dephosphorylation in wound signalling. Finally, a new model for wound–induced pin gene expression is presented, arising from recent data from the author‘apos; laboratory.


Author(s):  
Refik Bozbuga

Abstract Background The plant parasitic nematode genus Meloidogyne parasitize almost all flowering crops. Plants respond with a variety of morphological and molecular mechanisms to reduce the effects of pathogens. Proteinase inhibitors (PI), a special group of plant proteins which are small proteins, involve in protective role in the plants attacked by microorganisms. Still, the plant response using PI against nematodes has not been well understood. Therefore, this study was aimed to determine the expression of proteinase inhibitor I (PI-I) gene subsequent the infection of M. incognita, M. javanica, and M. chitwoodi in tomato plants post nematode infections. Molecular methods were used to determine the PI gene expressions at different days post nematode infections in host tissues. Results Results revealed that the population of M. incognita species reached the highest level of nematode population followed by M. javanica and M. chitwoodi, respectively. All Meloidogyne species induced expression of PI-I gene reached at the utmost level at 3 days post infection (dpi) in host tissues. Relative gene expression level was sharply dropped at 7 dpi, 14 dpi, and 21 dpi in M. incognita induced gene expression in host tissues. Similar results were observed in host tissues after infection of M. javanica and M. chitwoodi. Conclusions The commonalities of plant response across a diverse Meloidogyne species interaction and the expression of PI gene may be related to plant defense system. Increased level of PI gene expressions in early infection days in host tissues induced by parasitic nematodes may share resemblances to the mechanisms of resistance on biotrophic interactions.


Planta ◽  
1992 ◽  
Vol 186 (4) ◽  
Author(s):  
Hugo Pe�a-Cort�s ◽  
Xiangjun Liu ◽  
Jos�Sanchez Serrano ◽  
Rainer Schmid ◽  
Lothar Willmitzer

2020 ◽  
Vol 20 (12) ◽  
pp. 1487-1496 ◽  
Author(s):  
Midori Murakami ◽  
Hiroto Izumi ◽  
Tomoko Kurita ◽  
Chiho Koi ◽  
Yasuo Morimoto ◽  
...  

Background: Cisplatin is an important anticancer agent in cancer chemotherapy, but when resistant cells appear, treatment becomes difficult, and the prognosis is poor. Objective: In this study, we investigated the gene expression profile in cisplatin sensitive and resistant cells, and identified the genes involved in cisplatin resistance. Methods: Comparison of gene expression profiles revealed that UBE2L6 mRNA is highly expressed in resistant cells. To elucidate whether UBE2L6 is involved in the acquisition of cisplatin resistance, UBE2L6- overexpressing cells established from cisplatin-sensitive cells and UBE2L6-silenced cells developed from cisplatin- resistant cells were generated, and the sensitivity of cisplatin was examined. Results: The sensitivity of the UBE2L6-overexpressing cells did not change compared with the control cells, but the UBE2L6-silenced cells were sensitized to cisplatin. To elucidate the mechanism of UBE2L6 in cisplatin resistance, we compared the gene expression profiles of UBE2L6-silenced cells and control cells and found that the level of ABCB6 mRNA involved in cisplatin resistance was decreased. Moreover, ABCB6 promoter activity was partially suppressed in UBE2L6-silenced cells. Conclusion: These results suggest that cisplatin-resistant cells have upregulated UBE2L6 expression and contribute to cisplatin resistance by regulating ABCB6 expression at the transcriptional level. UBE2L6 might be a molecular target that overcomes cisplatin resistance.


Sign in / Sign up

Export Citation Format

Share Document