scholarly journals Cluster formation induced by a cloud–cloud collision in [DBS2003]179

Author(s):  
Sho Kuwahara ◽  
Kazufumi Torii ◽  
Norikazu Mizuno ◽  
Shinji Fujita ◽  
Mikito Kohno ◽  
...  

Abstract [DBS2003]179 is a super star cluster in the Galaxy discovered in deep near-infrared observations. We carried out CO $J$ = 1–0 and $J$ = 3–2 observations of the region of [DBS2003]179 with NANTEN2, ASTE, and the Mopra 22 m telescope. We identified and mapped two molecular clouds that are likely to be associated with the cluster. This association is supported by the spatial correlation with the corresponding 8$\, \mu$m Spitzer image and by a high ratio of the two transitions of $^{12}$CO($J$ = 3–2 and $J$ = 1–0). The two clouds show complementary distributions in space, and bridging features connect them in velocity. We hypothesize that the two clouds collided with each other 1–2 Myr ago and that the collision compressed the interfacial layer, triggering the formation of the cluster. This offers an additional piece of evidence for a super star cluster formed by a cloud–cloud collision, alongside the four super star clusters Westerlund$\:2$, NGC 3603, RCW 38, and R 136. These findings indicate that the known super star clusters with closely associated dust emission were formed by cloud–cloud collisions, lending support to the important role of cloud–cloud collisions in high-mass star formation.

2019 ◽  
Vol 488 (4) ◽  
pp. 5400-5408 ◽  
Author(s):  
Mark A Norris ◽  
Glenn van de Ven ◽  
Sheila J Kannappan ◽  
Eva Schinnerer ◽  
Ryan Leaman

Abstract The discovery around the turn of the millennium of a population of very massive (M⋆ > 2 × 106 M⊙) compact stellar systems (CSS) with physical properties (radius, velocity dispersion, stellar mass etc.) that are intermediate between those of the classical globular cluster (GC) population and galaxies led to questions about their exact nature. Recently a consensus has emerged that these objects, usually called ultracompact dwarfs (UCDs), are a mass-dependent mixture of high-mass star clusters and remnant nuclei of tidally disrupted galaxies. The existence of genuine star clusters with stellar masses >107 M⊙ naturally leads to questions about the upper mass limit of the star cluster formation process. In this work we compile a comprehensive catalogue of CSS, and reinforce the evidence that the true ancient star cluster population has a maximum mass of M⋆ ∼ 5 × 107 M⊙, corresponding to a stellar mass at birth of close to 108 M⊙. We then discuss several physical and statistical mechanisms potentially responsible for creating this limiting mass.


Author(s):  
Hidetoshi Sano ◽  
Rei Enokiya ◽  
Katsuhiro Hayashi ◽  
Mitsuyoshi Yamagishi ◽  
Shun Saeki ◽  
...  

2015 ◽  
Vol 12 (S316) ◽  
pp. 70-76
Author(s):  
Zara Randriamanakoto ◽  
Petri Väisänen

AbstractSuper star clusters (SSCs) represent the youngest and most massive form of known gravitationally bound star clusters in the Universe. They are born abundantly in environments that trigger strong and violent star formation. We investigate the properties of these massive SSCs in a sample of 42 nearby starbursts and luminous infrared galaxies. The targets form the sample of the SUperNovae and starBursts in the InfraReD (SUNBIRD) survey that were imaged using near-infrared (NIR) K-band adaptive optics mounted on the Gemini/NIRI and the VLT/NaCo instruments. Results from i) the fitted power-laws to the SSC K-band luminosity functions, ii) the NIR brightest star cluster magnitude − star formation rate (SFR) relation and iii) the star cluster age and mass distributions have shown the importance of studying SSC host galaxies with high SFR levels to determine the role of the galactic environments in the star cluster formation, evolution and disruption mechanisms.


2009 ◽  
Vol 5 (S266) ◽  
pp. 447-450
Author(s):  
Patricio Lagos ◽  
Eduardo Telles ◽  
E. R. Carrasco

AbstractWe summarize our results based on observations with the NIRI camera on the Gemini North telescope of three Hii galaxies (Mrk 36, UM 408 and UM 461), obtained to identify and determine the ages and masses of the elementary components (the star cluster population) of the starburst regions in compact Hii galaxies. Our preliminary results indicate that the masses of the stellar clusters in these galaxies range from ~104 to ~106 M⊙, with associated ages of a few Myr. The most massive star clusters fall in the so-called super star cluster category. The identification of these clusters suggests that the formation and evolution of massive star clusters is the dominant mode of star formation in these galaxies. Their spatial distribution and ages seem to indicate that star formation is simultaneous over these timescales in some of our objects. We also review our recent description of the spatial distribution of physical conditions in the Hii galaxy UM 408 using the GMOS integral-field unit on Gemini South. The spatial distribution of the oxygen abundance does not show any significant variation or gradient across the galaxy on scales of hundreds of parsecs, within our observational uncertainties, confirming that this compact Hii galaxy, like other previously studied dwarf irregular galaxies, is chemically homogeneous.


2020 ◽  
Vol 496 (1) ◽  
pp. 638-648 ◽  
Author(s):  
Timo L R Halbesma ◽  
Robert J J Grand ◽  
Facundo A Gómez ◽  
Federico Marinacci ◽  
Rüdiger Pakmor ◽  
...  

ABSTRACT We investigate whether the galaxy and star formation model used for the Auriga simulations can produce a realistic globular cluster (GC) population. We compare statistics of GC candidate star particles in the Auriga haloes with catalogues of the Milky Way (MW) and Andromeda (M31) GC populations. We find that the Auriga simulations do produce sufficient stellar mass for GC candidates at radii and metallicities that are typical for the MW GC system (GCS). We also find varying mass ratios of the simulated GC candidates relative to the observed mass in the MW and M31 GCSs for different bins of galactocentric radius metallicity (rgal–[Fe/H]). Overall, the Auriga simulations produce GC candidates with higher metallicities than the MW and M31 GCS and they are found at larger radii than observed. The Auriga simulations would require bound cluster formation efficiencies higher than 10 per cent for the metal-poor GC candidates, and those within the Solar radius should experience negligible destruction rates to be consistent with observations. GC candidates in the outer halo, on the other hand, should either have low formation efficiencies, or experience high mass-loss for the Auriga simulations to produce a GCS that is consistent with that of the MW or M31. Finally, the scatter in the metallicity as well as in the radial distribution between different Auriga runs is considerably smaller than the differences between that of the MW and M31 GCSs. The Auriga model is unlikely to give rise to a GCS that can be consistent with both galaxies.


2010 ◽  
Vol 6 (S270) ◽  
pp. 483-486 ◽  
Author(s):  
Takayuki R. Saitoh ◽  
Hiroshi Daisaka ◽  
Eiichiro Kokubo ◽  
Junichiro Makino ◽  
Takashi Okamoto ◽  
...  

AbstractWe studied the formation process of star clusters using high-resolutionN-body/smoothed particle hydrodynamics simulations of colliding galaxies. The total number of particles is 1.2×108for our high resolution run. The gravitational softening is 5 pc and we allow gas to cool down to ~10 K. During the first encounter of the collision, a giant filament consists of cold and dense gas found between the progenitors by shock compression. A vigorous starburst took place in the filament, resulting in the formation of star clusters. The mass of these star clusters ranges from 105−8M⊙. These star clusters formed hierarchically: at first small star clusters formed, and then they merged via gravity, resulting in larger star clusters.


2018 ◽  
Vol 620 ◽  
pp. A60 ◽  
Author(s):  
R. Cañameras ◽  
N. P. H. Nesvadba ◽  
M. Limousin ◽  
H. Dole ◽  
R. Kneissl ◽  
...  

We report the discovery of a molecular wind signature from a massive intensely star-forming clump of a few 109 M⊙, in the strongly gravitationally lensed submillimeter galaxy “the Emerald” (PLCK_G165.7+49.0) at z = 2.236. The Emerald is amongst the brightest high-redshift galaxies on the submillimeter sky, and was initially discovered with the Planck satellite. The system contains two magnificient structures with projected lengths of 28.5″ and 21″ formed by multiple, near-infrared arcs, falling behind a massive galaxy cluster at z = 0.35, as well as an adjacent filament that has so far escaped discovery in other wavebands. We used HST/WFC3 and CFHT optical and near-infrared imaging together with IRAM and SMA interferometry of the CO(4–3) line and 850 μm dust emission to characterize the foreground lensing mass distribution, construct a lens model with LENSTOOL, and calculate gravitational magnification factors between 20 and 50 in most of the source. The majority of the star formation takes place within two massive star-forming clumps which are marginally gravitationally bound and embedded in a 9 × 1010 M⊙, fragmented disk with 20% gas fraction. The stellar continuum morphology is much smoother and also well resolved perpendicular to the magnification axis. One of the clumps shows a pronounced blue wing in the CO(4–3) line profile, which we interpret as a wind signature. The mass outflow rates are high enough for us to suspect that the clump might become unbound within a few tens of Myr, unless the outflowing gas can be replenished by gas accretion from the surrounding disk. The velocity offset of –200 km s−1 is above the escape velocity of the clump, but not that of the galaxy overall, suggesting that much of this material might ultimately rain back onto the galaxy and contribute to fueling subsequent star formation.


2018 ◽  
Vol 617 ◽  
pp. A14 ◽  
Author(s):  
S. Paron ◽  
M. B. Areal ◽  
M. E. Ortega

Aims. Estimating molecular abundances ratios from directly measuring the emission of the molecules toward a variety of interstellar environments is indeed very useful to advance our understanding of the chemical evolution of the Galaxy, and hence of the physical processes related to the chemistry. It is necessary to increase the sample of molecular clouds, located at different distances, in which the behavior of molecular abundance ratios, such as the 13CO/C18O ratio, is studied in detail. Methods. We selected the well-studied high-mass star-forming region G29.96−0.02, located at a distance of about 6.2 kpc, which is an ideal laboratory to perform this type of study. To study the 13CO/C18O abundance ratio (X13∕18) toward this region, we used 12CO J = 3–2 data obtained from the CO High-Resolution Survey, 13CO and C18O J = 3–2 data from the 13CO/C18O (J = 3–2) Heterodyne Inner Milky Way Plane Survey, and 13CO and C18O J = 2–1 data retrieved from the CDS database that were observed with the IRAM 30 m telescope. The distribution of column densities and X13∕18 throughout the extension of the analyzed molecular cloud was studied based on local thermal equilibrium (LTE) and non-LTE methods. Results. Values of X13∕18 between 1.5 and 10.5, with an average of about 5, were found throughout the studied region, showing that in addition to the dependency of X13∕18 and the galactocentric distance, the local physical conditions may strongly affect this abundance ratio. We found that correlating the X13∕18 map with the location of the ionized gas and dark clouds allows us to suggest in which regions the far-UV radiation stalls in dense gaseous components, and in which regions it escapes and selectively photodissociates the C18O isotope. The non-LTE analysis shows that the molecular gas has very different physical conditions, not only spatially throughout the cloud, but also along the line of sight. This type of study may represent a tool for indirectly estimating (from molecular line observations) the degree of photodissociation in molecular clouds, which is indeed useful to study the chemistry in the interstellar medium.


2020 ◽  
Vol 643 ◽  
pp. A178
Author(s):  
Kadirya Tursun ◽  
Jarken Esimbek ◽  
Christian Henkel ◽  
Xindi Tang ◽  
Gang Wu ◽  
...  

We surveyed the Aquila Rift complex including the Serpens South and W 40 regions in the NH3 (1,1) and (2,2) transitions making use of the Nanshan 26-m telescope. Our observations cover an area of ~ 1.5° × 2.2° (11.4 pc × 16.7 pc). The kinetic temperatures of the dense gas in the Aquila Rift complex obtained from NH3 (2,2)/(1,1) ratios range from 8.9 to 35.0 K with an average of 15.3 ± 6.1 K (errors are standard deviations of the mean). Low gas temperatures are associated with Serpens South ranging from 8.9 to 16.8 K with an average of 12.3 ± 1.7 K, while dense gas in the W 40 region shows higher temperatures ranging from 17.7 to 35.0 K with an average of 25.1 ± 4.9 K. A comparison of kinetic temperatures derived from para-NH3 (2,2)/(1,1) against HiGal dust temperatures indicates that the gas and dust temperatures are in agreement in the low-mass-star formation region of Serpens South. In the high-mass-star formation region W 40, the measured gas kinetic temperatures are higher than those of the dust. The turbulent component of the velocity dispersion of NH3 (1,1) is found to be positively correlated with the gas kinetic temperature, which indicates that the dense gas may be heated by dissipation of turbulent energy. For the fractional total-NH3 (para+ortho) abundance obtained by a comparison with Herschel infrared continuum data representing dust emission, we find values from 0.1 ×10−8 to 2.1 ×10−7 with an average of 6.9 (±4.5) × 10−8. Serpens South also shows a fractional total-NH3 (para+ortho) abundance ranging from 0.2 ×10−8 to 2.1 ×10−7 with an average of 8.6 (±3.8) × 10−8. In W 40, values are lower, between 0.1 and 4.3 ×10−8 with an average of 1.6 (±1.4) × 10−8. Weak velocity gradients demonstrate that the rotational energy is a negligible fraction of the gravitational energy. In W 40, gas and dust temperatures are not strongly dependent on the projected distance to the recently formed massive stars. Overall, the morphology of the mapped region is ring-like, with strong emission at lower and weak emission at higher Galactic longitudes. However, the presence of a physical connection between the two parts remains questionable.


2021 ◽  
Vol 923 (2) ◽  
pp. 278
Author(s):  
S. T. Linden ◽  
A. S. Evans ◽  
K. Larson ◽  
G. C. Privon ◽  
L. Armus ◽  
...  

Abstract We present the results of a Hubble Space Telescope WFC3 near-UV and Advanced Camera for Surveys Wide Field Channel optical study into the star cluster populations of a sample of 10 luminous infrared galaxies (LIRGs) in the Great Observatories All-Sky LIRG Survey. Through integrated broadband photometry we have derived ages, masses, and extinctions for a total of 1027 star clusters in galaxies with d L < 110 Mpc in order to avoid issues related to cluster bending. The measured cluster age distribution slope of dN / d τ ∝ τ − 0.5 + / − 0.12 is steeper than what has been observed in lower-luminosity star-forming galaxies. Further, differences in the slope of the observed cluster age distribution between inner- ( dN / d τ ∝ τ − 1.07 + / − 0.12 ) and outer-disk ( dN / d τ ∝ τ − 0.37 + / − 0.09 ) star clusters provide evidence of mass-dependent cluster destruction in the central regions of LIRGs driven primarily by the combined effect of strong tidal shocks and encounters with massive giant molecular clouds. Excluding the nuclear ring surrounding the Seyfert 1 nucleus in NGC 7469, the derived cluster mass function (CMF; dN / dM ∝ M α ) offers marginal evidence for a truncation in the power law at M t ∼ 2×106 M ⊙ for our three most cluster-rich sources, which are all classified as early stage mergers. Finally, we find evidence of a flattening of the CMF slope of dN / dM ∝ M − 1.42 ± 0.1 for clusters in late-stage mergers relative to early stage (α = −1.65 ± 0.02), which we attribute to an increase in the formation of massive clusters over the course of the interaction.


Sign in / Sign up

Export Citation Format

Share Document