scholarly journals Astrometry of H2O masers in the W 48 A (G35.20−01.74) H ii region with VERA: A compact disk outflow inside core H-2a

2020 ◽  
Vol 72 (4) ◽  
Author(s):  
James O Chibueze ◽  
Takumi Nagayama ◽  
Toshihiro Omodaka ◽  
Masayuki Nagano ◽  
Koji Wada ◽  
...  

Abstract W 48 A core H-2a is one of the young massive protostellar objects in the W 48 region. We conducted multi-epoch astrometric observations of the water (H2O) masers associated with the W 48 A core H-2a with VLBI Exploration of Radio Astrometry (VERA). The trigonometric annual parallax of W 48 A core H-2a was measured to be 0.433 ± 0.026 mas, corresponding to a distance of $2.31^{+0.15}_{-0.13}$ kpc. This agrees with the revised parallax of 0.412 ± 0.014 mas by Wu et al. (2019, ApJ, 874, 94). We obtained the systemic proper motion and local standard of rest velocity to be (μαcos δ, μδ) = (0.26 ± 0.73, −3.87 ± 0.33) mas yr−1 and vLSR = 41.9 ± 0.9 km s−1, respectively. The distribution of the H2O masers covers an area of 70 mas × 80 mas, corresponding to 160 au × 180 au at the distance of 2.31 kpc. The internal proper motions of the H2O masers trace an east–west bipolar outflow. With the recent absolute position measurement of the 6.7 GHz methanol (CH3OH) masers and their elliptical distribution, whose major axis is perpendicular to the axis of the bipolar outflow, we suggest the presence of a disk outflow system in core H-2a. The spectral energy distribution (SED) of the driving source of core H-2a was previously reported to yield a luminosity and envelope mass of 8000 ± 1000 $W_{\odot}$ and 170 ± 30 $M_{\odot}$, respectively. Refitting the SED with the new distance, we obtained the luminosity to be 3100 ± 388 $L_{\odot}$ and derived the zero age main sequence (ZAMS) stellar mass to be 9 ± 1 $M_{\odot}$. Using our distance measurement, we derived the peculiar motion of W 48 A to be (Us, Vs, Ws) = (1 ± 4, 5 ± 6, −15 ± 5) km s−1.

2014 ◽  
Vol 10 (S311) ◽  
pp. 82-85 ◽  
Author(s):  
Jonathan Sick ◽  
Stephane Courteau ◽  
Jean-Charles Cuillandre ◽  
Julianne Dalcanton ◽  
Roelof de Jong ◽  
...  

AbstractOur proximity and external vantage point make M31 an ideal testbed for understanding the structure of spiral galaxies. The Andromeda Optical and Infrared Disk Survey (ANDROIDS) has mapped M31's bulge and disk out to R=40 kpc in ugriJKs bands with CFHT using a careful sky calibration. We use Bayesian modelling of the optical-infrared spectral energy distribution (SED) to estimate profiles of M31's stellar populations and mass along the major axis. This analysis provides evidence for inside-out disk formation and a declining metallicity gradient. M31's i-band mass-to-light ratio (M/Li*) decreases from 0.5 dex in the bulge to ~ 0.2 dex at 40 kpc. The best-constrained stellar population models use the full ugriJKs SED but are also consistent with optical-only fits. Therefore, while NIR data can be successfully modelled with modern stellar population synthesis, NIR data do not provide additional constraints in this application. Fits to the gi-SED alone yield M/Li* that are systematically lower than the full SED fit by 0.1 dex. This is still smaller than the 0.3 dex scatter amongst different relations for M/Li via g – i colour found in the literature. We advocate a stellar mass of M*(30 kpc) = 10.3+2.3-1.7 × 1010 M⊙ for the M31 bulge and disk.


2020 ◽  
Vol 495 (2) ◽  
pp. 2088-2104
Author(s):  
Jonás Chaves-Montero ◽  
Andrew Hearin

ABSTRACT The spectral energy distribution of a galaxy emerges from the complex interplay of many physical ingredients, including its star formation history (SFH), metallicity evolution, and dust properties. Using galaxpy, a new galaxy spectral prediction tool, and SFHs predicted by the empirical model universemachine and the cosmological hydrodynamical simulation IllustrisTNG, we isolate the influence of SFH on optical and near-infrared colours from 320 to 1080 Å at z = 0. By carrying out a principal component analysis, we show that physically motivated SFH variations modify galaxy colours along a single direction in colour space: the SFH-direction. We find that the projection of a galaxy’s present-day colours on to the SFH-direction is almost completely regulated by the fraction of stellar mass that the galaxy formed over the last billion years. Together with cosmic downsizing, this results in galaxies becoming redder as their host halo mass increases. We additionally study the change in galaxy colours due to variations in metallicity, dust attenuation, and nebular emission lines, finding that these properties vary broad-band colours along distinct directions in colour space relative to the SFH-direction. Finally, we show that the colours of low-redshift Sloan Digital Sky Survey galaxies span an ellipsoid with significant extent along two independent dimensions, and that the SFH-direction is well-aligned with the major axis of this ellipsoid. Our analysis supports the conclusion that variations in SFH are the dominant influence on present-day galaxy colours, and that the nature of this influence is strikingly simple.


2013 ◽  
Vol 8 (S299) ◽  
pp. 241-246
Author(s):  
Mickaël Bonnefoy ◽  
Anthony Boccaletti ◽  
Anne-Marie Lagrange ◽  
France Allard ◽  
Christoph Mordasini ◽  
...  

AbstractThe young (12+8−4 Myr) and nearby (19.44±0.05 pc) star β Pictoris is considered one of the best laboratories for the study of early phases of planetary systems formation since the identification of an extended debris disk surrounding the star in 1984. In 2009, we imaged at 3.8 μm with NaCo at VLT a gas giant planet around β Pictoris, roughly along the disk mid-plane, with a semi-major axis between 8 and 14 AU. We present here the first images of the planet in the J (1.265 μm), H (1.66 μm), and M' (4.78 μm) bands obtained between 2011 and 2012. We used these data to build the 1-5 μm spectral energy distribution (SED) of the companion, and to consolidate previous semi-major axis (8-10 AU) estimates. We compared the SED to seven atmospheric models to derive Teff = 1700 ± 100 K. We used the temperature and the luminosity of β Pictoris b to estimate new masses for the companion. We compared these masses to independent constraints set by the orbital parameters and the radial velocities and use them to discuss the formation history of the object.


2018 ◽  
Vol 617 ◽  
pp. A109 ◽  
Author(s):  
J. Olofsson ◽  
R. G. van Holstein ◽  
A. Boccaletti ◽  
M. Janson ◽  
P. Thébault ◽  
...  

Context. Debris disks are the intrinsic by-products of the star and planet formation processes. Most likely due to instrumental limitations and their natural faintness, little is known about debris disks around low mass stars, especially when it comes to spatially resolved observations. Aims. We present new VLT/SPHERE IRDIS dual-polarization imaging (DPI) observations in which we detect the dust ring around the M2 spectral type star TWA 7. Combined with additional angular differential imaging observations we aim at a fine characterization of the debris disk and setting constraints on the presence of low-mass planets. Methods. We modeled the SPHERE DPI observations and constrain the location of the small dust grains, as well as the spectral energy distribution of the debris disk, using the results inferred from the observations, and performed simple N-body simulations. Results. We find that the dust density distribution peaks at ~0.72′′ (25 au), with a very shallow outer power-law slope, and that the disk has an inclination of ~13° with a position angle of ~91° east of north. We also report low signal-to-noise ratio detections of an outer belt at a distance of ~1.5′′ (~52 au) from the star, of a spiral arm in the southern side of the star, and of a possible dusty clump at 0.11′′. These findings seem to persist over timescales of at least a year. Using the intensity images, we do not detect any planets in the close vicinity of the star, but the sensitivity reaches Jovian planet mass upper limits. We find that the SED is best reproduced with an inner disk at ~0.2′′ (~7 au) and another belt at 0.72′′ (25 au). Conclusions. We report the detections of several unexpected features in the disk around TWA 7. A yet undetected 100M⊕ planet with a semi-major axis at 20−30 au could possibly explain the outer belt as well as the spiral arm. We conclude that stellar winds are unlikely to be responsible for the spiral arm.


2020 ◽  
Vol 640 ◽  
pp. A12
Author(s):  
J. Olofsson ◽  
J. Milli ◽  
A. Bayo ◽  
Th. Henning ◽  
N. Engler

Context. Debris discs are valuable systems to study dust properties. Because they are optically thin at all wavelengths, we have direct access to the absorption and scattering properties of the dust grains. One very promising technique to study them is to measure their phase function, that is, the scattering efficiency as a function of the scattering angle. Discs that are highly inclined are promising targets as a wider range of scattering angles can be probed. Aims. The phase function (polarised or total intensity) is usually either inferred by comparing the observations to synthetic disc models, assuming a parametrised phase function or estimating it from the surface brightness of the disc. Here, we argue that the latter approach can be biased due to projection effects leading to an increase in column density along the major axis of a non-flat disc. Methods. We present a novel approach to account for those column density effects. The method remains model dependent, as a disc model is still required to estimate the density variations as a function of the scattering angle. This method allows us, however, to estimate the shape of the phase function without having to invoke any parametrised form. Results. We apply our method to SPHERE/ZIMPOL observations of HR 4796 A and highlight the differences with previous measurements only using the surface brightness; the main differences being at scattering angles smaller than ~100°. Our modelling results suggest that the disc is not vertically flat at optical wavelengths; this result is supported by comparing the width along the major and minor axis of synthetic images. We discuss some of the caveats of the approach, mostly that our method remains blind to real local increases in the dust density and that it cannot be readily applied to angular differential imaging observations yet. Conclusions. We show that the vertical thickness of inclined (≥60°) debris discs can affect the determination of their phase functions. Similarly to previous studies on HR 4796 A, we still cannot reconcile the full picture using a given scattering theory to explain the shape of the phase function, the blow-out size due to radiation pressure, and the shape of the spectral energy distribution, which is a long-lasting problem for debris discs. Nonetheless, we argue that similar effects, such as the ones highlighted in this study, can also bias the determination of the phase function in total intensity.


2020 ◽  
Vol 501 (1) ◽  
pp. 337-346
Author(s):  
E Mestre ◽  
E de Oña Wilhelmi ◽  
D Khangulyan ◽  
R Zanin ◽  
F Acero ◽  
...  

ABSTRACT Since 2009, several rapid and bright flares have been observed at high energies (>100 MeV) from the direction of the Crab nebula. Several hypotheses have been put forward to explain this phenomenon, but the origin is still unclear. The detection of counterparts at higher energies with the next generation of Cherenkov telescopes will be determinant to constrain the underlying emission mechanisms. We aim at studying the capability of the Cherenkov Telescope Array (CTA) to explore the physics behind the flares, by performing simulations of the Crab nebula spectral energy distribution, both in flaring and steady state, for different parameters related to the physical conditions in the nebula. In particular, we explore the data recorded by Fermi during two particular flares that occurred in 2011 and 2013. The expected GeV and TeV gamma-ray emission is derived using different radiation models. The resulting emission is convoluted with the CTA response and tested for detection, obtaining an exclusion region for the space of parameters that rule the different flare emission models. Our simulations show different scenarios that may be favourable for achieving the detection of the flares in Crab with CTA, in different regimes of energy. In particular, we find that observations with low sub-100 GeV energy threshold telescopes could provide the most model-constraining results.


2020 ◽  
Vol 500 (3) ◽  
pp. 3240-3253
Author(s):  
Amanda R Lopes ◽  
Eduardo Telles ◽  
Jorge Melnick

ABSTRACT We discuss the implications of assuming different star formation histories (SFH) in the relation between star formation rate (SFR) and mass derived by the spectral energy distribution fitting (SED). Our analysis focuses on a sample of H ii galaxies, dwarf starburst galaxies spectroscopically selected through their strong narrow emission lines in SDSS DR13 at z < 0.4, cross-matched with photometric catalogues from GALEX, SDSS, UKIDSS, and WISE. We modelled and fitted the SEDs with the code CIGALE adopting different descriptions of SFH. By adding information from different independent studies, we find that H ii galaxies are best described by episodic SFHs including an old (10 Gyr), an intermediate age (100−1000 Myr) and a recent population with ages < 10 Myr. H ii galaxies agree with the SFR−M* relation from local star-forming galaxies, and only lie above such relation when the current SFR is adopted as opposed to the average over the entire SFH. The SFR−M* demonstrated not to be a good tool to provide additional information about the SFH of H ii galaxies, as different SFH present a similar behaviour with a spread of <0.1 dex.


2020 ◽  
Vol 499 (3) ◽  
pp. 4068-4081 ◽  
Author(s):  
Ting-Wen Wang ◽  
Tomotsugu Goto ◽  
Seong Jin Kim ◽  
Tetsuya Hashimoto ◽  
Denis Burgarella ◽  
...  

ABSTRACT In order to understand the interaction between the central black hole and the whole galaxy or their co-evolution history along with cosmic time, a complete census of active galactic nucleus (AGN) is crucial. However, AGNs are often missed in optical, UV, and soft X-ray observations since they could be obscured by gas and dust. A mid-infrared (MIR) survey supported by multiwavelength data is one of the best ways to find obscured AGN activities because it suffers less from extinction. Previous large IR photometric surveys, e.g. Wide field Infrared Survey Explorer and Spitzer, have gaps between the MIR filters. Therefore, star-forming galaxy-AGN diagnostics in the MIR were limited. The AKARI satellite has a unique continuous nine-band filter coverage in the near to MIR wavelengths. In this work, we take advantage of the state-of-the-art spectral energy distribution modelling software, cigale, to find AGNs in MIR. We found 126 AGNs in the North Ecliptic Pole-Wide field with this method. We also investigate the energy released from the AGN as a fraction of the total IR luminosity of a galaxy. We found that the AGN contribution is larger at higher redshifts for a given IR luminosity. With the upcoming deep IR surveys, e.g. JWST, we expect to find more AGNs with our method.


1997 ◽  
Vol 163 ◽  
pp. 725-726
Author(s):  
K.-W. Hodapp ◽  
E. F. Ladd

Stars in the earliest phases of their formation, i.e., those accreting the main component of their final mass, are deeply embedded within dense cores of dust and molecular material. Because of the high line-of-sight extinction and the large amount of circumstellar material, stellar emission is reprocessed by dust into long wavelength radiation, typically in the far-infrared and sub-millimeter bands. Consequently, the youngest sources are strong submillimeter continuum sources, and often undetectable as point sources in the near-infrared and optical. The most deeply embedded of these sources have been labelled “Class 0” sources by André, Ward-Thompson, & Barsony (1994), in an extension of the spectral energy distribution classification scheme first proposed by Adams, Lada, & Shu (1987).


Sign in / Sign up

Export Citation Format

Share Document