High Ambient Temperatures Inhibit Ghd7-mediated Flowering Repression in Rice

Author(s):  
Asanga Deshappriya Nagalla ◽  
Noriko Nishide ◽  
Ken-ichiro Hibara ◽  
Takeshi Izawa

Abstract The anticipation of changing seasons is crucial for reproduction in plants. Despite the broad cultivation area, the effects of ambient temperature on its photoperiodic flowering are largely unknown in rice. Here, we first examined flowering time under four distinct conditions: short-day or long-day and high or low temperature, using cultivars, nearly isogenic lines, and mutants in rice. We also examined gene expression patterns of key flowering-time genes using the same lines under various conditions including temporal dynamics after light pulses. In addition to delayed flowering because of low growth rates, we found that photoperiodic flowering is clearly enhanced by both Hd1 and Ghd7 genes under low-temperature conditions in rice. We also revealed that PhyB can control Ghd7 repressor activity as a temperature sensor to inhibit Ehd1, Hd3a, and RFT1 at lower temperatures, likely through a post-transcriptional regulation, despite inductive photoperiod conditions. Furthermore, we found that rapid reduction of Ghd7 mRNA under high-temperature conditions can lead to mRNA increase in a rice florigen gene, RFT1. Thus, multiple temperature sensing mechanisms would affect photoperiodic flowering in rice. The rising of ambient temperatures in early summer would contribute to inhibition of Ghd7 repressor activity, resulting in the appropriate floral induction of rice in temperate climates.

1995 ◽  
Vol 22 (5) ◽  
pp. 783 ◽  
Author(s):  
DJ Batten ◽  
CA Mcconchie

Buds of potted plants of the terminal flowering tree species lychee (Litchi chinensis) and mango (Mangifera indica) forced to begin growth at high temperatures (florally non-inductive) and then transferred to low temperatures produced inflorescences, so the whole process of floral induction can occur in growing buds. Floral initials were visible in lychee within 39 days of transfer to low temperature and 30 days in mango, indicating that floral induction occurs relatively quickly in both species. In most cases where plants were transferred to winter ambient temperatures for floral induction, pre-activated (growing) buds flowered more consistently than buds that were dormant at the time of transfer. If the buds were small when plants were transferred from high temperature to low temperature, leafless inflorescences formed. If buds were a little larger, leafy inflorescences formed, with leaves basally and flowers terminally. If the buds were larger again, the shoots were purely vegetative. All these observations are consistent with floral induction occuning while the bud is growing and provide for much improved experimental systems for studying the physiology of floral induction in species such as lychee and mango.


Author(s):  
Zhen Tian ◽  
Xiaodong Qin ◽  
Hui Wang ◽  
Ji Li ◽  
Jinfeng Chen

AbstractThe CONSTANS-like (COL) gene family is one of the plant-specific transcription factor families that play important roles in plant growth and development. However, the knowledge of COLs related in cucumber is limited, and their biological functions, especially in the photoperiod-dependent flowering process, are still unclear. In this study, twelve CsaCOL genes were identified in the cucumber genome. Phylogenetic and conserved motif analyses provided insights into the evolutionary relationship between the CsaCOLs. Further, the comparative genome analysis revealed that COL genes are conserved in different plant species, especially collinearity gene pairs related to CsaCOL5. Ten kinds of cis-acting elements were vividly detected in CsaCOLs promoter regions, including five light-responsive elements, which echo the diurnal rhythm expression patterns of seven CsaCOL genes under SD and LD photoperiod regimes. Combined with the expression data of developmental stage, three CsaCOL genes are involved in the flowering network and play pivotal roles for the floral induction process. Our results provide useful information for further elucidating the structural characteristics, expression patterns, and biological functions of COL family genes in many plants


Sign in / Sign up

Export Citation Format

Share Document