scholarly journals Genome-Wide Identification and Expression Analyses of CONSTANS-Like Family Genes in Cucumber (Cucumis sativus L.)

Author(s):  
Zhen Tian ◽  
Xiaodong Qin ◽  
Hui Wang ◽  
Ji Li ◽  
Jinfeng Chen

AbstractThe CONSTANS-like (COL) gene family is one of the plant-specific transcription factor families that play important roles in plant growth and development. However, the knowledge of COLs related in cucumber is limited, and their biological functions, especially in the photoperiod-dependent flowering process, are still unclear. In this study, twelve CsaCOL genes were identified in the cucumber genome. Phylogenetic and conserved motif analyses provided insights into the evolutionary relationship between the CsaCOLs. Further, the comparative genome analysis revealed that COL genes are conserved in different plant species, especially collinearity gene pairs related to CsaCOL5. Ten kinds of cis-acting elements were vividly detected in CsaCOLs promoter regions, including five light-responsive elements, which echo the diurnal rhythm expression patterns of seven CsaCOL genes under SD and LD photoperiod regimes. Combined with the expression data of developmental stage, three CsaCOL genes are involved in the flowering network and play pivotal roles for the floral induction process. Our results provide useful information for further elucidating the structural characteristics, expression patterns, and biological functions of COL family genes in many plants

2021 ◽  
Author(s):  
Zihan Cheng ◽  
Xuemei Zhang ◽  
Wenjing Yao ◽  
Yuan Gao ◽  
Kai Zhao ◽  
...  

Abstract Background: Xyloglucan endotransglucosylase/hydrolase (XTH) plays an important role in the process of plant cell wall reconstruction, and also involved in plants stress resistance. However, its characteristics of XTH family genes have not been reported in poplar. Results: In this study, we found 43 PtrXTH genes from Populus simonii × Populus nigra, and most of them contain two conserved structures (Glyco_hydro_16 and XET_C domain). The promoter regions of the PtrXTH genes contain many cis-acting elements related to growth and development and adverse stresses responses. Collinearity analysis revealed that the XTH family from poplarhave an evolutionary relationship with other five species, including Eucalyptus robusta, Solanum lycopersicum, Glycine max, Arabidopsis, Zea mays and Oryza sativa. Through RNA-Seq analysis, we found that the PtrXTH genes have different expression patterns in the roots, stems and leaves, and many of them are highly expressed in the roots. In addition, we found 11 differentially expressed PtrXTH genes in the roots, 9 in the stems, and 7 in the leaves under salt stress, and verified the accuracy of RNA-Seq analysis by RT-qPCR.Conclusion: All the results indicated that XTH family genes may play an important role in tissue specificity and salt stress response. This study laid a theoretical foundation for further study on the functions of XTH genes in poplar.


2020 ◽  
Author(s):  
Jing Yang ◽  
Zhonglong Guo ◽  
Yao Cao ◽  
Rui Chen ◽  
Wentao Wang ◽  
...  

Abstract Background SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factors play critical roles in regulating diverse aspects of plant growth and development, including vegetative phase change, plant architecture, anthocyanin accumulation, lateral root growth, etc. Codonopsis pilosula is a famous medicinal plant and its dried root, named Dangshen, is one of the most widely used traditional Chinese medicine. However, little information about SPL genes in this species has been reported. Results In the present study, 15 SPL genes were identified based on the genome data of Codonopsis pilosula. Ten of the 15 CpSPLs were predicted to be the targets of miR156. Phylogenetic analysis clustered CpSPLs into seven groups (G1-G7) along with 16 SPLs from Arabidopsis thaliana. CpSPLs in the same group share similar gene structure and conserved motif composition. Cis-acting elements responding to light, stress, and phytohormone widely exist in their promoter regions. Our qRT-PCR results indicated that 15 CpSPLs were differentially expressed in different tissues (root, stem, leaf, flower, and calyx), different developmental periods (1, 2 and 3 months after germination), and various conditions (NaCl, MeJA and ABA treatment). Compared with the control, overexpression of CpSPL2 or CpSPL10 significantly promoted not only the growth of hairy roots, but also the accumulation of total saponins and lobetyolin. Conclusions The SPL genes in the C. pilosula genome were identified and their expression patterns were analyzed. The novel roles of CpSPL2 and CpSPL10 in promoting the accumulation of secondary metabolites and growth of C. pilosula hairy root were revealed. Our results established a foundation for further investigation of CpSPLs and provided novel insights into their biological functions.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Zihan Cheng ◽  
Xuemei Zhang ◽  
Wenjing Yao ◽  
Yuan Gao ◽  
Kai Zhao ◽  
...  

Abstract Background Xyloglucan endotransglucosylase/hydrolase (XTH) family plays an important role in cell wall reconstruction and stress resistance in plants. However, the detailed characteristics of XTH family genes and their expression pattern under salt stress have not been reported in poplar. Results In this study, a total of 43 PtrXTH genes were identified from Populus simonii × Populus nigra, and most of them contain two conserved structures (Glyco_hydro_16 and XET_C domain). The promoters of the PtrXTH genes contain mutiple cis-acting elements related to growth and development and stress responses. Collinearity analysis revealed that the XTH genes from poplar has an evolutionary relationship with other six species, including Eucalyptus robusta, Solanum lycopersicum, Glycine max, Arabidopsis, Zea mays and Oryza sativa. Based on RNA-Seq analysis, the PtrXTH genes have different expression patterns in the roots, stems and leaves, and many of them are highly expressed in the roots. In addition, there are11 differentially expressed PtrXTH genes in the roots, 9 in the stems, and 7 in the leaves under salt stress. In addition, the accuracy of RNA-Seq results was verified by RT-qPCR. Conclusion All the results indicated that XTH family genes may play an important role in tissue specificity and salt stress response. This study will lay a theoretical foundation for further study on molecular function of XTH genes in poplar.


Plants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1669
Author(s):  
Angelo De Paolis ◽  
Sofia Caretto ◽  
Angela Quarta ◽  
Gian-Pietro Di Sansebastiano ◽  
Irene Sbrocca ◽  
...  

Artemisia annua L. is well-known as the plant source of artemisinin, a sesquiterpene lactone with effective antimalarial activity. Here, a putative ortholog of the Arabidopsis thaliana WRKY40 transcription factor (TF) was isolated via reverse transcription-polymerase chain reaction and rapid amplification of cDNA ends in A. annua and named AaWRKY40. A putative nuclear localization domain was identified in silico and experimentally confirmed by using protoplasts of A. annua transiently transformed with AaWRKY40-GFP. A genome-wide analysis identified 122 WRKY genes in A. annua, and a manually curated database was obtained. The deduced proteins were categorized into the major WRKY groups, with group IIa containing eight WRKY members including AaWRKY40. Protein motifs, gene structure, and promoter regions of group IIa WRKY TFs of A. annua were characterized. The promoter region of AaWRKY group IIa genes contained several abiotic stress cis-acting regulatory elements, among which a highly conserved W-box motif was identified. Expression analysis of AaWRKY40 compared to AaWRKY1 in A. annua cell cultures treated with methyl jasmonate known to enhance artemisinin production, suggested a possible involvement of AaWRKY40 in terpenoid metabolism. Further investigation is necessary to study the role of AaWRKY40 and possible interactions with other TFs in A. annua.


2020 ◽  
Vol 21 (10) ◽  
pp. 3711
Author(s):  
Melina J. Sedano ◽  
Alana L. Harrison ◽  
Mina Zilaie ◽  
Chandrima Das ◽  
Ramesh Choudhari ◽  
...  

Genome-wide RNA sequencing has shown that only a small fraction of the human genome is transcribed into protein-coding mRNAs. While once thought to be “junk” DNA, recent findings indicate that the rest of the genome encodes many types of non-coding RNA molecules with a myriad of functions still being determined. Among the non-coding RNAs, long non-coding RNAs (lncRNA) and enhancer RNAs (eRNA) are found to be most copious. While their exact biological functions and mechanisms of action are currently unknown, technologies such as next-generation RNA sequencing (RNA-seq) and global nuclear run-on sequencing (GRO-seq) have begun deciphering their expression patterns and biological significance. In addition to their identification, it has been shown that the expression of long non-coding RNAs and enhancer RNAs can vary due to spatial, temporal, developmental, or hormonal variations. In this review, we explore newly reported information on estrogen-regulated eRNAs and lncRNAs and their associated biological functions to help outline their markedly prominent roles in estrogen-dependent signaling.


2019 ◽  
Author(s):  
Yong Zhou ◽  
Yuan Cheng ◽  
Chunpeng Wan ◽  
Youxin Yang ◽  
Jinyin Chen

The plant DNA-binding with one finger (Dof) gene family is a class of plant-specific transcription factors that play vital roles in many biological processes and response to stresses. In the present study, a total of 36 ClDof genes were identified in the watermelon genome, which were unevenly distributed on 10 chromosomes. Phylogenetic analysis showed that the ClDof proteins could be divided into nine groups, and the members in a particular group had similar motif arrangement and exon-intron structure. We then analyzed the expression patterns of nine selected ClDof genes in eight specific tissues by qRT-PCR, and the results showed that they have tissue-specific expression patterns. We also evaluated the expression levels of the nine selected ClDof genes under salt stress and ABA treatments using qRT-PCR, and they showed differential expression under these treatments, suggesting their important roles in stress response. Taken together, our results provide a basis for future research on the biological functions of Dof genes in watermelon.


Author(s):  
Shefali Mishra ◽  
Pradeep Sharma ◽  
Rajender Singh ◽  
ratan Tiwari ◽  
Gyanendra Pratap Singh

The SnRK gene family is a key regulator playing an important role in plant stress response by phosphorylating the target protein to regulate the signalling pathways. The function of SnRK gene family has been reported in many species but is limited to Triticum asetivum. In this study, SnRK gene family in the wheat genome was identified and its structural characteristics were described. One hundred forty-seven SnRK genes distributed across 21 chromosomes were identified in the Triticum aestivum genome and categorised into three subgroups (SnRK1/2/3) based on phylogenetic analyses and domain types. The gene intron-exon structure and protein-motif composition of SnRKs were similar within each subgroup but different amongst the groups. Gene duplication between the wheat, Arabidopsis, rice and barley genomes was also investigated in order to get insight into the evolutionary aspects of the TaSnRK family genes. SnRK genes showed differential expression patterns in leaves, roots, spike, and grains. Redundant stress-related cis-elements were also found in the promoters of 129 SnRK genes and their expression levels varied widely following drought, ABA and light regulated elements. In particular, TaSnRK2.11 had higher and increased expression under the abiotic stresses and can be a candidate gene for the abiotc stress tolerance. The findings will aid in the functional characterization of TaSnRK genes for further research.


2020 ◽  
Author(s):  
Duo Lv ◽  
Gang Wang ◽  
Yue Chen ◽  
Liang-Rong Xiong ◽  
Jing-Xian Sun ◽  
...  

Abstract Background Lectin receptor-like kinases (LecRLKs) are a class of membrane proteins found in plants that are involved in diverse functions, including plant development and stress responses. Although LecRLK families have been identified in a variety of plants, a comprehensive analysis has not yet been undertaken in cucumber ( Cucumis sativus L.).Results In this study, 46 putative LecRLK genes were identified in cucumber genome, including 23 G-type, 22 L-type and 1 C-type LecRLK genes. They unequally distributed on all 7 chromosomes with a clustering trendency. Most of the genes in the cucumber LecRLK (Cs LecRLK) gene family lacked introns. In addition, there were many regulatory elements associated with phytohormone and stress on these genes’ promoters. Transcriptome data demonstrated that distinct expression patterns of CsLecRLK genes in various tissues. Furthermore, we found that each member of the CsLecRLK family had its own unique expression pattern under hormone and stress treatment by the quantitative real time PCR (qRT-PCR) analysis.Conclusion This study provides a better understanding of the evolution and function of LecRLK gene family in cucumber, and opens the possibility to explore the roles that LecRLK s might play in the life cycle of cucumber.


2019 ◽  
Author(s):  
Limin Lv ◽  
Dongyun Zuo ◽  
Xingfen Wang ◽  
Hailiang Cheng ◽  
Youping Zhang ◽  
...  

Abstract Background : Expansins ( EXPs ), a group of proteins that loosen plant cell walls and cellulosic materials, are involved in regulating cell growth and diverse developmental processes in plants. However, the biological functions of this gene family are still unknown in cotton. Results: In this paper, we identified a total of 93 expansin genes in Gossypium hirsutum . These genes were classified into four subfamilies, including 67 GhEXPAs , eight GhEXPBs , six GhEXLAs , and 12 GhEXLBs , and divided into 15 subgroups. All 93 expansin genes are distributed over 24 chromosomes excluding Ghir_A02 and Ghir_D06. All GhEXP genes contain multiple exons and each GhEXP protein has multiple conserved motifs. Transcript profiling and qPCR analysis revealed that the expansin genes have distinct expression patterns in different stages of cotton fibre development. Among them, three genes ( GhEXPA4o , GhEXPA1A , and GhEXPA8h ) were highly expressed in the initiation stage, nine genes ( GhEXPA4a , GhEXPA13a , GhEXPA4f , GhEXPA4q , GhEXPA8f , GhEXPA2 , GhEXPA8g , GhEXPA8a , and GhEXPA4n ) had high expression during the fast elongation stage, while GhEXLA1c and GhEXLA1f were preferentially expressed in the transition stage of fibre development. Conclusions: Our results provide a solid basis for further elucidation of biological functions of expansin genes in cotton fibre development and valuable genetic resources used for crop improvement in the future.


2021 ◽  
Vol 22 (24) ◽  
pp. 13568
Author(s):  
Zhengfu Yang ◽  
Hongmiao Jin ◽  
Junhao Chen ◽  
Caiyun Li ◽  
Jiani Wang ◽  
...  

The AP2 transcriptional factors (TFs) belong to the APETALA2/ ethylene-responsive factor (AP2/ERF) superfamily and regulate various biological processes of plant growth and development, as well as response to biotic and abiotic stresses. However, genome-wide research on the AP2 subfamily TFs in the pecan (Carya illinoinensis) is rarely reported. In this paper, we identify 30 AP2 subfamily genes from pecans through a genome-wide search, and they were unevenly distributed on the pecan chromosomes. Then, a phylogenetic tree, gene structure and conserved motifs were further analyzed. The 30 AP2 genes were divided into euAP2, euANT and basalANT three clades. Moreover, the cis-acting elements analysis showed many light responsive elements, plant hormone-responsive elements and abiotic stress responsive elements are found in CiAP2 promoters. Furthermore, a qPCR analysis showed that genes clustered together usually shared similar expression patterns in euAP2 and basalANT clades, while the expression pattern in the euANT clade varied greatly. In developing pecan fruits, CiAP2-5, CiANT1 and CiANT2 shared similar expression patterns, and their expression levels decreased with fruit development. CiANT5 displayed the highest expression levels in developing fruits. The subcellular localization and transcriptional activation activity assay demonstrated that CiANT5 is located in the nucleus and functions as a transcription factor with transcriptional activation activity. These results help to comprehensively understand the pecan AP2 subfamily TFs and lay the foundation for further functional research on pecan AP2 family genes.


Sign in / Sign up

Export Citation Format

Share Document