scholarly journals In situ Sr Isotope Compositions of Plagioclase from a Complete Stratigraphic Profile of the Bushveld Complex, South Africa: Evidence for Extensive Magma Mixing and Percolation

2017 ◽  
Vol 58 (11) ◽  
pp. 2285-2308 ◽  
Author(s):  
Bartosz T Karykowski ◽  
Sheng-Hong Yang ◽  
Wolfgang D Maier ◽  
Yann Lahaye ◽  
C Johan Lissenberg ◽  
...  
1988 ◽  
Vol 52 (364) ◽  
pp. 81-89 ◽  
Author(s):  
R. Grant Cawthorn ◽  
Kevin L. Walsh

AbstractPhosphorus contents in cumulus rocks occurring close to the level of apatite appearance in the basic rocks of the Bushveld Complex, South Africa, provide a method of calculating the proportion of intercumulus component in these rocks. Previous experimental studies have accurately constrained the phosphorus content of magmas when apatite becomes stable. The ratio of the phosphorus content in the cumulates immediately below the appearance of apatite to this liquid composition defines the proportion of trapped liquid.Application of this method to rocks from the uppermost mafic rocks of the Bushveld Complex leads to the conclusion that there is from 1 to 6 per cent intercumulus component. Many of these rocks are multiphase cumulates and in such rocks estimation of intercumulus component from textural criteria is difficult.If crystals grow In situ on the floor of the magma chamber such small proportions of interstitial component can be produced without appealing to excessive diffusion and circulation of magma through an unconsolidated crystal pile. The geometry of the intrusion as well as its size might have a major influence on the proportion of the liquid ultimately solidifying within a cumulus rock.


2021 ◽  
Author(s):  
Zhuo-Sen Yao ◽  
James Mungall

Abstract The great economic significance of layered mafic-ultramafic intrusions like the Bushveld Complex of South Africa results from the existence within them of some layers highly concentrated in valuable elements. Here we address the origins of the Main Magnetite Layer, a globally important resource of Fe-Ti-V-rich magnetite. Previous models of in situ fractional magnetite crystallization require frequent ad hoc adjustments to the boundary conditions. An alternative model of rapid deposition of loose piles of magnetite crystals followed by compositional convection near the top of the pile and infiltration of the pile from beneath by migrating intercumulus melt fits observations without any adjustments. The data admit both explanations, but the latter model, with the fewest unconstrained interventions, is preferable. The choice of models has pivotal ramifications for understanding of the fundamental processes by which crystals accumulate and layers form in layered intrusions.


Author(s):  
Montgarri Castillo-Oliver ◽  
Andrea Giuliani ◽  
William L. Griffin ◽  
Suzanne Y. O’Reilly ◽  
Russell N. Drysdale ◽  
...  

2016 ◽  
Vol 46 (suppl 1) ◽  
pp. 227-243
Author(s):  
Patricio Montecinos Munoz ◽  
Adriana Alves ◽  
Rogério Guitarrari Azzone ◽  
Pablo Cordenons ◽  
Sandra Morano ◽  
...  

ABSTRACT: This contribution describes the successful implementation of in situ Sr isotope analyses by LA-MC-ICP-MS at the CPGeo-USP. The choice for an analytical configuration using measurements of half-masses allows the accurate assessment of lanthanide interferences, permitting the determination of Sr isotopes in important REE-rich accessory phases, such as apatite. Likewise, the on-peak-zero method effectively corrects the background contribution (both from Kr and residual Sr contributions from previous ablations) to the signals of the unknown samples. The analytical campaigns resulted in an accuracy, in respect to reference TIMS values, better than 57 ppm (~ ±0.000057 2σ SD) for a modern coral and the Batjberg clinopyroxene which impart significant quality to our data. Similarly, the majority of the stable Sr isotope ratios are close to the accepted values, which also confirms the effectiveness of the method. The achieved accuracy allows the identification and investigation of spatially-controlled isotopic heterogeneities on the micrometric scale in several Sr-rich minerals (apatite, carbonates, plagioclase, and clinopyroxene) with important implications to the understanding of relevant geochemical processes, particularly AFC, source geochemical heterogeneities and magma-mixing.


1998 ◽  
Vol 62 (04) ◽  
pp. 435-450 ◽  
Author(s):  
Andrew A. Mitchell ◽  
Hugh V. Eales ◽  
F. Johan Kruger

Abstract Petrographic and compositional variations in the Lower Main Zone (LMZ) of the western Bushveld Complex indicate changing regimes of magma replenishment. The lowermost unit of the LMZ, designated N-I, is an enigmatic sequence of leuconoritic cumulates, characterized primarily by up-sequence increases in both orthopyroxene Mg# and whole-rock Sr isotope initial ratio. The Sr isotope profile of N-I is ascribed to injection and progressive integration of small influxes of fresh magma with high (Main Zone-type) Sr isotope initial ratios. The basal Fe-enrichment in N-I, on the other hand, is ascribed to a separate, later mechanism involving the downward migration of late-stage Fe-rich liquids. The overlying two units, N-II and G-I, delineated chiefly in terms of basal Mg-enrichment of orthopyroxene, are ascribed to injections of fresh magma into the chamber. Poikilitic orthopyroxene grains in the basal parts of both N-II and G-I suggest entrainment and partial resorption of plagioclase grains from the semi-crystalline resident material into which the fresh magma was intruded.


2017 ◽  
Vol 120 (3) ◽  
pp. 303-322
Author(s):  
D. Pienaar ◽  
B.M. Guy ◽  
C. Pienaar ◽  
K.S. Viljoen

Abstract Mineralogical and textural variability of ores from different sources commonly leads to processing inefficiencies, particularly when a processing plant is designed to treat ore from a single source (i.e. ore of a relatively uniform composition). The bulk of the Witwatersrand ore in the Klerksdorp goldfield, processed at the AngloGold Ashanti Great Noligwa treatment plant, is derived from the Vaal Reef (>90%), with a comparatively small contribution obtained from the Crystalkop Reef (or C-Reef). Despite the uneven contribution, it is of critical importance to ensure that the processing parameters are optimized for the treatment of both the Vaal and C-Reefs. This paper serves to document the results of a geometallurgical study of the C-Reef at the Great Noligwa gold mine in the Klerksdorp goldfield of South Africa, with the primary aim of assessing the suitability of the processing parameters that are in use at the Great Noligwa plant. The paper also draws comparisons between the C-Reef and the Vaal Reef A-facies (Vaal Reef) and attempts to explain minor differences in the recovery of gold and uranium from these two sources. Three samples of the C-Reef were collected in-situ from the underground operations at Great Noligwa mine for mineralogical analyses and metallurgical tests. Laboratory-scale leach tests for gold (cyanide) and uranium (sulphuric acid) were carried out using dissolution conditions similar to that in use at the Great Noligwa plant, followed by further diagnostic leaching in the case of gold. The gold in the ore was found to be readily leachable with recoveries ranging from 95% to 97% (as opposed to 89% to 93% for the Vaal Reef). Additional recoveries were achieved in the presence of excess cyanide (96% to 98%). The recovery of uranium varied between 72% and 76% (as opposed to 30% to 64% for the Vaal Reef), which is substantially higher than predicted, given the amount of brannerite in the ore, which is generally regarded as refractory. Thus, the higher uranium recoveries from the C-Reef imply that a proportion of the uranium was recovered by the partial dissolution of brannerite. As the Vaal Reef contain high amounts of chlorite (3% to 8%), which is an important acid consumer, it is considered likely that this could have reduced the effectiveness of the H2SO4 leach in the case of the ore of the Vaal Reef. Since the gold and uranium recoveries from the C-Reef were higher than the recoveries from the Vaal Reef, the results demonstrate that the processing parameters used for treatment of the Vaal Reef are equally suited to the treatment of the C-Reef. Moreover, small processing modifications, such as increased milling and leach retention times, may well increase the recovery of gold (particularly when e.g. coarse gold, or unexposed gold, is present).


2020 ◽  
Vol 123 (4) ◽  
pp. 655-668
Author(s):  
N. Lenhardt ◽  
W. Altermann ◽  
F. Humbert ◽  
M. de Kock

Abstract The Palaeoproterozoic Hekpoort Formation of the Pretoria Group is a lava-dominated unit that has a basin-wide extent throughout the Transvaal sub-basin of South Africa. Additional correlative units may be present in the Kanye sub-basin of Botswana. The key characteristic of the formation is its general geochemical uniformity. Volcaniclastic and other sedimentary rocks are relatively rare throughout the succession but may be dominant in some locations. Hekpoort Formation outcrops are sporadic throughout the basin and mostly occur in the form of gentle hills and valleys, mainly encircling Archaean domes and the Palaeoproterozoic Bushveld Complex (BC). The unit is exposed in the western Pretoria Group basin, sitting unconformably either on the Timeball Hill Formation or Boshoek Formation, which is lenticular there, and on top of the Boshoek Formation in the east of the basin. The unit is unconformably overlain by the Dwaalheuwel Formation. The type-locality for the Hekpoort Formation is the Hekpoort farm (504 IQ Hekpoort), ca. 60 km to the west-southwest of Pretoria. However, no stratotype has ever been proposed. A lectostratotype, i.e., the Mooikloof area in Pretoria East, that can be enhanced by two reference stratotypes are proposed herein. The Hekpoort Formation was deposited in a cratonic subaerial setting, forming a large igneous province (LIP) in which short-termed localised ponds and small braided river systems existed. It therefore forms one of the major Palaeoproterozoic magmatic events on the Kaapvaal Craton.


Sign in / Sign up

Export Citation Format

Share Document