magma replenishment
Recently Published Documents


TOTAL DOCUMENTS

20
(FIVE YEARS 7)

H-INDEX

10
(FIVE YEARS 1)

Minerals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 22
Author(s):  
Christoph Gauert ◽  
Armin Zeh

The about 2055-Ma-old mafic to ultramafic Uitkomst Complex in the Mpumalanga Province of South Africa hosts the low-grade-large-tonnage Ni-Cu-PGE deposit, Nkomati. The complex is regarded to represent a satellite to the Bushveld Complex and a feeder to an eroded magmatic reservoir in the southeast. Aeromagnetic surveys and previous drilling indicated an overall northwestern-downdip extension of the complex, but the question is to what extent and in which expression can the complete intrusion be found under cover in the northwest? Answering this, a mineralogical, geochemical and geochronological investigation of a borehole intersection of the whole complex at Little Mamre was carried out, using petrography, XRF, EPMA and LA-ICP-MS U–Pb analyses of zircons for age determination. Although the total thickness of the rock units is larger than to the southeast, emplacement, litho- and mineral chemistry trends, expression of alteration mineralogy and style of sulphide mineralisation are similar. The amount of sulphide mineralisation is on average less than in the southeast. The upper ultramafic unit contains, more frequently, pegmatoidal sections, and the Chromitiferous Harzburgite unit has less massive chromitite layers than the southeastern parts of the complex, whereas the gabbro(-norite) units contain more interstitial liquid with late-stage minerals. The findings confirm that the anvil-shaped intrusion in cross section continues with increased thickness towards northwest at a shallow dip; although approaching the deeper part of the igneous reservoir, mineral compositions are partially more evolved. The overall mineralogical consistency downdip supports a situation of multiple magma replenishment along a flat-lying, northwest–southeast trending conduit, resulting in an evolved cumulus mineral assemblage in the upper part.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1546
Author(s):  
Yota Suzuki ◽  
Hirofumi Muraoka ◽  
Hiroshi Asanuma

Deep low-frequency earthquakes (LFEs) are known to occur in dehydration phenomena from the subducting hydrous slab and in magmatic phenomena beneath Quaternary volcanoes in Japan. To realize the spatial and temporal characteristics of the magmatic deep low-frequency earthquakes, their hypocenters along with those of ordinary overhead high-frequency earthquakes are analyzed beneath six volcanic fields in northeastern Japan. This trial clarifies the rising basaltic magma conduits and rheological profiles of the lithosphere. Deep low-frequency earthquakes tend to form three vertical clusters corresponding to the rheological strength peak of the peridotite upper mantle, gabbroic lower crust, and granitic upper crust. Interactive aseismic gaps between low- and high-frequency earthquakes reveal the brittle–plastic transition as an isothermal indicator in the lithosphere. This relationship provides a tool to monitor the thermal evolution of the lithosphere and to explore sustainable geothermal resources with basaltic magma replenishment systems.


2020 ◽  
Vol 175 (9) ◽  
Author(s):  
Felix E. D. Kaufmann ◽  
Brian O’Driscoll ◽  
Lutz Hecht

Abstract The Rum Layered Suite, NW Scotland, hosts Cr-spinel seams at the bases of peridotite–troctolite macro-rhythmic units in the eastern portion of the intrusion. Here, we present detailed field observations together with microstructural and mineral chemical analyses for the Unit 7–8 Cr-spinel seam and associated cumulates in the Eastern Layered Intrusion. Detailed mapping and sampling reveal significant lateral variations in the structural characteristics and mineral compositions of the Unit 7–8 boundary zone rocks. Although the Cr-spinel seam is laterally continuous over ~ 3 km, it is absent towards the centre and the margins of the intrusion. The compositional characteristics of Cr-spinel and plagioclase vary systematically along strike, exhibiting a chemical evolution towards more differentiated compositions with increasing distance from the main feeder conduit of the Rum intrusion; the Long Loch Fault. On the basis of our combined datasets, we propose that the upper part of the troctolite, the anorthosite layer underlying the Cr-spinel seam and the seam itself formed during a multi-stage magma replenishment event. The stages can be summarised as follows: (1) peridotite schlieren and anorthosite autoliths formed following melt infiltration and cumulate assimilation in the crystal mush of the Unit 7 troctolite. (2) The anorthosite layer then formed from the Unit 7 troctolite crystal mush by thermal erosion and dissolution due to infiltrating magma. (3) Subsequent dissolution of the anorthosite layer by new replenishing magma led to peritectic in situ crystallisation of the Unit 7–8 Cr-spinel seam, with (4) continued magma input eventually producing the overlying Unit 8 peridotite. In the central part of the Rum Layered Suite, the aforementioned assimilation of the troctolitic footwall formed the anorthosite layer. However, the absence of anorthosite in close proximity to the Long Loch Fault can be explained by enhanced thermochemical erosion close to the feeder zone, and its absence close to the margins of the intrusion, at maximum distance from the Long Loch Fault, may be due to cooling of the magma and loss of erosion potential. In line with other recent studies on PGE-bearing chromitites in layered intrusions, we highlight the importance of multi-stage intrusive magma replenishment to the formation of spatially coupled anorthosite and Cr-spinel seams, as well as the lateral mineral chemical variations observed in the Unit 7–8 boundary zone cumulates.


Geology ◽  
2019 ◽  
Vol 47 (12) ◽  
pp. 1171-1175
Author(s):  
Lilu Cheng ◽  
Fidel Costa

Abstract Forecasting the timing and size of volcanic eruptions requires a proper interpretation of multiparametric monitoring signals. Studies of the erupted rocks can provide critical information on the processes and volcano plumbing system that is needed to decode the monitoring signals. Here we present the results of a petrological study of plagioclase phenocrysts using a new statistical approach that allows us to estimate the amount of intruded magma before eruption. Our crystal population analysis of the 2006 and 2010 CE Merapi volcano (Indonesia) eruptions shows that ∼60 ± 20 vol% of the 2010 magma was left over from the 2006 magma, and thus ∼40 ± 20 vol% was newly intruded magma. Using the published values of the 2010 erupted magma volume, this corresponds to >8 to 20 (±7) × 106 m3 of new magma. This is a minimum estimate and is similar to the inferred pre-eruptive deformation volume (18 ×106 m3), although given the uncertainties, several million cubic meters of magma intruded in 2010 could still be in the Merapi plumbing system. Our approach could be used at other volcanoes to quantify the volume of intruded magma and thus help in better understanding the unrest signals that anticipate eruptions.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Marco Viccaro ◽  
Marisa Giuffrida ◽  
Francesco Zuccarello ◽  
Mariabenedetta Scandura ◽  
Mimmo Palano ◽  
...  

2018 ◽  
Vol 59 (8) ◽  
pp. 1605-1642 ◽  
Author(s):  
Luke N Hepworth ◽  
Brian O’Driscoll ◽  
Ralf Gertisser ◽  
J Stephen Daly ◽  
C Henry Emeleus

2017 ◽  
Vol 44 (4) ◽  
pp. 1687-1695 ◽  
Author(s):  
Gillean M. Arnoux ◽  
Douglas R. Toomey ◽  
Emilie E. E. Hooft ◽  
William S. D. Wilcock ◽  
Joanna Morgan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document