scholarly journals Estimation with Aggregate Shocks

2019 ◽  
Vol 87 (3) ◽  
pp. 1365-1398 ◽  
Author(s):  
Jinyong Hahn ◽  
Guido Kuersteiner ◽  
Maurizio Mazzocco

Abstract Aggregate shocks affect most households’ and firms’ decisions. Using three stylized models, we show that inference based on cross-sectional data alone generally fails to correctly account for decision making of rational agents facing aggregate uncertainty. We propose an econometric framework that overcomes these problems by explicitly parameterizing the agents’ decision problem relative to aggregate shocks. Our framework and examples illustrate that the cross-sectional and time-series aspects of the model are often interdependent. Therefore, estimation of model parameters in the presence of aggregate shocks requires the combined use of cross-sectional and time-series data. We provide easy-to-use formulas for test statistics and confidence intervals that account for the interaction between the cross-sectional and time-series variation. Lastly, we perform Monte Carlo simulations that highlight the properties of the proposed method and the risks of not properly accounting for the presence of aggregate shocks.

Author(s):  
Andrew Q. Philips

In cross-sectional time-series data with a dichotomous dependent variable, failing to account for duration dependence when it exists can lead to faulty inferences. A common solution is to include duration dummies, polynomials, or splines to proxy for duration dependence. Because creating these is not easy for the common practitioner, I introduce a new command, mkduration, that is a straightforward way to generate a duration variable for binary cross-sectional time-series data in Stata. mkduration can handle various forms of missing data and allows the duration variable to easily be turned into common parametric and nonparametric approximations.


Author(s):  
Josep Escrig Escrig ◽  
Buddhika Hewakandamby ◽  
Georgios Dimitrakis ◽  
Barry Azzopardi

Intermittent gas and liquid two-phase flow was generated in a 6 m × 67 mm diameter pipe mounted rotatable frame (vertical up to −20°). Air and a 5 mPa s silicone oil at atmospheric pressure were studied. Gas superficial velocities between 0.17 and 2.9 m/s and liquid superficial velocities between 0.023 and 0.47 m/s were employed. These runs were repeated at 7 angles making a total of 420 runs. Cross sectional void fraction time series were measured over 60 seconds for each run using a Wire Mesh Sensor and a twin plane Electrical Capacitance Tomography. The void fraction time series data were analysed in order to extract average void fraction, structure velocities and structure frequencies. Results are presented to illustrate the effect of the angle as well as the phase superficial velocities affect the intermittent flows behaviour. Existing correlations suggested to predict average void fraction and gas structures velocity and frequency in slug flow have been compared with new experimental results for any intermittent flow including: slug, cap bubble and churn. Good agreements have been seen for the gas structure velocity and mean void fraction. On the other hand, no correlation was found to predict the gas structure frequency, especially in vertical and inclined pipes.


2000 ◽  
Vol 16 (6) ◽  
pp. 927-997 ◽  
Author(s):  
Hyungsik R. Moon ◽  
Peter C.B. Phillips

Time series data are often well modeled by using the device of an autoregressive root that is local to unity. Unfortunately, the localizing parameter (c) is not consistently estimable using existing time series econometric techniques and the lack of a consistent estimator complicates inference. This paper develops procedures for the estimation of a common localizing parameter using panel data. Pooling information across individuals in a panel aids the identification and estimation of the localizing parameter and leads to consistent estimation in simple panel models. However, in the important case of models with concomitant deterministic trends, it is shown that pooled panel estimators of the localizing parameter are asymptotically biased. Some techniques are developed to overcome this difficulty, and consistent estimators of c in the region c < 0 are developed for panel models with deterministic and stochastic trends. A limit distribution theory is also established, and test statistics are constructed for exploring interesting hypotheses, such as the equivalence of local to unity parameters across subgroups of the population. The methods are applied to the empirically important problem of the efficient extraction of deterministic trends. They are also shown to deliver consistent estimates of distancing parameters in nonstationary panel models where the initial conditions are in the distant past. In the development of the asymptotic theory this paper makes use of both sequential and joint limit approaches. An important limitation in the operation of the joint asymptotics that is sometimes needed in our development is the rate condition n/T → 0. So the results in the paper are likely to be most relevant in panels where T is large and n is moderately large.


2007 ◽  
Vol 9 (1) ◽  
pp. 30-41 ◽  
Author(s):  
Nikhil S. Padhye ◽  
Sandra K. Hanneman

The application of cosinor models to long time series requires special attention. With increasing length of the time series, the presence of noise and drifts in rhythm parameters from cycle to cycle lead to rapid deterioration of cosinor models. The sensitivity of amplitude and model-fit to the data length is demonstrated for body temperature data from ambulatory menstrual cycling and menopausal women and from ambulatory male swine. It follows that amplitude comparisons between studies cannot be made independent of consideration of the data length. Cosinor analysis may be carried out on serial-sections of the series for improved model-fit and for tracking changes in rhythm parameters. Noise and drift reduction can also be achieved by folding the series onto a single cycle, which leads to substantial gains in the model-fit but lowers the amplitude. Central values of model parameters are negligibly changed by consideration of the autoregressive nature of residuals.


2017 ◽  
Vol 12 (2) ◽  
pp. 151 ◽  
Author(s):  
Yusuf Ali Al-Hroot ◽  
Laith Akram Muflih AL-Qudah ◽  
Faris Irsheid Audeh Alkharabsha

This paper intends to investigate whether the financial crisis (2008) exerted an impact on the level of accounting conservatism in the case of Jordanian commercial banks before and during the financial crisis. The sample of this study includes 78 observations; these observations are based on the financial statements of all commercial banks in Jordan and may be referred to as cross-sectional data, whereas the period from 2005 to 2011 represents a range of years characterized by time series data. The appropriate regression model to measure the relationship between cross-sectional data and time series data is in this case the pooled data regression (PDR) using the ordinary least squares (OLS) method. The results indicate that the level of accounting conservatism had been steadily increasing over a period of three years from 2005 to 2007. The results also indicate that the level of accounting conservatism was subjected to an increase during crisis period between 2009 and 2011 compared with the level of accounting conservatism for the period 2005-2007 preceding the global financial crisis. The F-test was used in order to test the significant differences between the regression coefficients for the period before and during the global financial crisis. The results indicate a positive impact on the accounting conservatism during the global financial crisis compared with the period before the global financial crisis. The p-value is 0.040 which indicates that there are statistically significant differences between the two periods; these results are consistent with the results in Sampaio (2015).


1986 ◽  
Vol 2 (3) ◽  
pp. 331-349 ◽  
Author(s):  
John J. Beggs

This article proposes the use of spectral methods to pool cross-sectional replications (N) of time series data (T) for time series analysis. Spectral representations readily suggest a weighting scheme to pool the data. The asymptotically desirable properties of the resulting estimators seem to translate satisfactorily into samples as small as T = 25 with N = 5. Simulation results, Monte Carlo results, and an empirical example help confirm this finding. The article concludes that there are many empirical situations where spectral methods canbe used where they were previously eschewed.


2007 ◽  
Vol 23 (4) ◽  
pp. 227-237 ◽  
Author(s):  
Thomas Kubiak ◽  
Cornelia Jonas

Abstract. Patterns of psychological variables in time have been of interest to research from the beginning. This is particularly true for ambulatory monitoring research, where large (cross-sectional) time-series datasets are often the matter of investigation. Common methods for identifying cyclic variations include spectral analyses of time-series data or time-domain based strategies, which also allow for modeling cyclic components. Though the prerequisites of these sophisticated procedures, such as interval-scaled time-series variables, are seldom met, their usage is common. In contrast to the time-series approach, methods from a different field of statistics, directional or circular statistics, offer another opportunity for the detection of patterns in time, where fewer prerequisites have to be met. These approaches are commonly used in biology or geostatistics. They offer a wide range of analytical strategies to examine “circular data,” i.e., data where period of measurement is rotationally invariant (e.g., directions on the compass or daily hours ranging from 0 to 24, 24 being the same as 0). In psychology, however, circular statistics are hardly known at all. In the present paper, we intend to give a succinct introduction into the rationale of circular statistics and describe how this approach can be used for the detection of patterns in time, contrasting it with time-series analysis. We report data from a monitoring study, where mood and social interactions were assessed for 4 weeks in order to illustrate the use of circular statistics. Both the results of periodogram analyses and circular statistics-based results are reported. Advantages and possible pitfalls of the circular statistics approach are highlighted concluding that ambulatory assessment research can benefit from strategies borrowed from circular statistics.


2008 ◽  
Vol 9 (1) ◽  
pp. 1-19 ◽  
Author(s):  
KENTARO FUKUMOTO

AbstractLegislative scholars have debated what factors (e.g. divided government) account for the number of important laws a legislative body passes per year. This paper presents a monopoly model for explaining legislative production. It assumes that a legislature adjusts its law production so as to maximize its utility. The model predicts that socio-economic and political changes increase the marginal benefit of law production, whereas low negotiation costs and ample legislative resources decrease the marginal cost of law production. The model is tested in two ways. The first approach compares the legislatures of 42 developed and developing countries. The second analyzes Japanese lawmaking from 1949 to 1990, using an appropriate method for event count time series data. Both empirical investigations support the model's predictions for legislative production.


Sign in / Sign up

Export Citation Format

Share Document