Monte Carlo simulations for the shielding of the future high-intensity accelerator facility fair at GSI

2005 ◽  
Vol 115 (1-4) ◽  
pp. 212-215
Author(s):  
T. Radon ◽  
F. Gutermuth ◽  
G. Fehrenbacher
Author(s):  
J Shinar ◽  
V Turetsky

Successful interception of manoeuvring anti-surface missiles that are expected in the future can be achieved only if the estimation errors against manoeuvring targets can be minimized. The paper raises new ideas for an improved estimation concept by separating the tasks of the estimation system and by explicit use of the time-to-go in the process. The outcome of the new approach is illustrated by results of Monte Carlo simulations in generic interception scenarios. The results indicate that if an eventual ‘jump’ in the commanded target acceleration is detected sufficiently rapidly, small estimation errors and consequently precise guidance can be obtained.


2019 ◽  
Vol 204 ◽  
pp. 11004 ◽  
Author(s):  
V. Mikhaylov ◽  
A. Kugler ◽  
V. Kushpil ◽  
O. Svoboda ◽  
P. Tlustý ◽  
...  

The Projectile Spectator Detector (PSD) of the CBM experiment at the future FAIR facility is a compensating lead-scintillator calorimeter designed to measure the energy distribution of the forward going projectile nucleons and nuclei fragments (reaction spectators) produced close to the beam rapidity. The detector performance for the centrality and reaction plane determination is reviewed based on Monte-Carlo simulations of gold-gold collisions by means of four different heavy-ion event generators. The PSD energy resolution and the linearity of the response measured at CERN PS for the PSD supermodule consisting of 9 modules are presented. Predictions of the calorimeter radiation conditions at CBM and response measurement of one PSD module equipped with neutron irradiated MPPCs used for the light read out are discussed.


Author(s):  
Matthew T. Johnson ◽  
Ian M. Anderson ◽  
Jim Bentley ◽  
C. Barry Carter

Energy-dispersive X-ray spectrometry (EDS) performed at low (≤ 5 kV) accelerating voltages in the SEM has the potential for providing quantitative microanalytical information with a spatial resolution of ∼100 nm. In the present work, EDS analyses were performed on magnesium ferrite spinel [(MgxFe1−x)Fe2O4] dendrites embedded in a MgO matrix, as shown in Fig. 1. spatial resolution of X-ray microanalysis at conventional accelerating voltages is insufficient for the quantitative analysis of these dendrites, which have widths of the order of a few hundred nanometers, without deconvolution of contributions from the MgO matrix. However, Monte Carlo simulations indicate that the interaction volume for MgFe2O4 is ∼150 nm at 3 kV accelerating voltage and therefore sufficient to analyze the dendrites without matrix contributions.Single-crystal {001}-oriented MgO was reacted with hematite (Fe2O3) powder for 6 h at 1450°C in air and furnace cooled. The specimen was then cleaved to expose a clean cross-section suitable for microanalysis.


1979 ◽  
Vol 40 (C7) ◽  
pp. C7-63-C7-64
Author(s):  
A. J. Davies ◽  
J. Dutton ◽  
C. J. Evans ◽  
A. Goodings ◽  
P.K. Stewart

Sign in / Sign up

Export Citation Format

Share Document