Minimum detectable annual dose calculation for routine individual monitoring programme in case of plutonium and uranium contamination of the workplace

2010 ◽  
Vol 144 (1-4) ◽  
pp. 419-422
Author(s):  
A. A. Molokanov ◽  
B. A. Kukhta ◽  
V. N. Yatsenko ◽  
L. I. Bolshakova
2005 ◽  
Vol 20 (1) ◽  
pp. 86-90
Author(s):  
Marko Ninkovic ◽  
Ruzica Glisic

A critical look at UNEP Reports concerning depleted uranium on Yugoslav territory is presented in this paper. The subjects of the analysis are summarized as remarks high-lighting the following three points: (a) those concerning the use of terms significant and insignificant doses (risks), (b) those concerning the use of 1 mSv as a border between these two risk types and (c) those concerning the composition of ex pert UNEP Teams investigating the depleted uranium issue. To start with, the assumption that it should be possible to express the risks (con sequences) caused by the in take of depleted uranium ( by ingestion/ inhalation and/ or external exposure) to b and g rays from depleted uranium as insignificant or significant for comparison purposes is, in our view, in collision with the linear non thresh old hypothesis, still valid in the radiation protection field. Secondly, the limit of 1 mSv per year as a reference dose level between insignificant and significant risks (con sequences) is not accept able in the case of military depleted uranium contamination. This is because the reference level of 1 mSv, according to the ICRP Recommendation, can be used in the optimization of radiation protection as an additional annual dose limit for members of the public solely for useful practices. Military usage of depleted uranium can not be classified as being useful for both sides - the culprit and the victim alike. Our third objection concerns the composition of ex pert UNEP teams for Kosovo (Desk Assessment Group, Scientific Reviewer Group, and UNEP Scientific Mission) as not being representative enough, bearing in mind all UN member-countries. This last objection may be rather difficult to understand for any one viewing it from the perspective other than that of the victims.


2020 ◽  
Vol 35 (1) ◽  
pp. 82-86
Author(s):  
Marija Suric-Mihic ◽  
Robert Bernat ◽  
Jerko Sisko ◽  
Maja Vojnic-Kortmis ◽  
Luka Pavelic ◽  
...  

Individual hand monitoring for workers who manipulate unsealed radioactive sources in nuclear medicine is a necessity and the results can serve as the base for optimization processes. We performed an analysis of individual hand doses for medical staff preparing and applying radiopharmaceuticals (99mTc, 123I, 201Tl, 131I, or 125I) in three Croatian clinical hospitals, for a period of one year since extremity monitoring became legally mandatory in Croatia. The majority of annual hand doses for workers were below or slightly above 150 mSv per year with only a few workers exceeding the annual dose limit of 500 mSv. The analysis confirmed that the radiation protection expert's role in an individual monitoring programme and personal dosimetry is crucial in order to achieve the optimal radiation protection of workers.


Author(s):  
E. C. Buck ◽  
N. L. Dietz ◽  
J. K. Bates

Operations at former weapons processing facilities in the U. S. have resulted in a large volume of radionuclidecontaminated soils and residues. In an effort to improve remediation strategies and meet environmental regulations, radionuclide-bearing particles in contaminant soils from Fernald in Ohio and the Rocky Flats Plant (RFP) in Colorado have been characterized by electron microscopy. The object of these studies was to determine the form of the contaminant radionuclide, so that it properties could be established [1]. Physical separation and radiochemical analysis determined that uranium contamination at Fernald was not present exclusively in any one size/density fraction [2]. The uranium-contamination resulted from aqueous and solid product spills, air-borne dust particles, and from the operation of an incinerator on site. At RFP the contamination was from the incineration of Pu-bearing materials. Further analysis by x-ray absorption spectroscopy indicated that the majority of the uranium was in the 6+ oxidation state [3].


2008 ◽  
pp. 1-10
Author(s):  
V. Yusa ◽  
T. Suelves ◽  
L. Ruiz-Atienza ◽  
M. L. Cervera ◽  
V. Benedito ◽  
...  

2017 ◽  
Vol 1 (3) ◽  
pp. 54
Author(s):  
BOUKELLOUZ Wafa ◽  
MOUSSAOUI Abdelouahab

Background: Since the last decades, research have been oriented towards an MRI-alone radiation treatment planning (RTP), where MRI is used as the primary modality for imaging, delineation and dose calculation by assigning to it the needed electron density (ED) information. The idea is to create a computed tomography (CT) image or so-called pseudo-CT from MRI data. In this paper, we review and classify methods for creating pseudo-CT images from MRI data. Each class of methods is explained and a group of works in the literature is presented in detail with statistical performance. We discuss the advantages, drawbacks and limitations of each class of methods. Methods: We classified most recent works in deriving a pseudo-CT from MR images into four classes: segmentation-based, intensity-based, atlas-based and hybrid methods. We based the classification on the general technique applied in the approach. Results: Most of research focused on the brain and the pelvis regions. The mean absolute error (MAE) ranged from 80 HU to 137 HU and from 36.4 HU to 74 HU for the brain and pelvis, respectively. In addition, an interest in the Dixon MR sequence is increasing since it has the advantage of producing multiple contrast images with a single acquisition. Conclusion: Radiation therapy field is emerging towards the generalization of MRI-only RT thanks to the advances in techniques for generation of pseudo-CT images. However, a benchmark is needed to set in common performance metrics to assess the quality of the generated pseudo-CT and judge on the efficiency of a certain method.


1982 ◽  
Vol 14 (3) ◽  
pp. 93-107 ◽  
Author(s):  
D C Macleod

The performance of two sea outfalls that have been in operation off the coast of Durban for over 10 years has been monitored for effects on the marine environment and public health. The discharge has been a mixture of domestic sewage and industrial waste from which a large proportion of the sludge has been removed but a 2-year research project, in which the balance of the sludge is also being discharged, has commenced. Performance of the outfalls and details of the monitoring programme are reviewed.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 268
Author(s):  
Todd C. Harris ◽  
Laurent Vuilleumier ◽  
Claudine Backes ◽  
Athanasios Nenes ◽  
David Vernez

Epidemiology and public health research relating to solar ultraviolet (UV) exposure usually relies on dosimetry to measure UV doses received by individuals. However, measurement errors affect each dosimetry measurement by unknown amounts, complicating the analysis of such measurements and their relationship to the underlying population exposure and the associated health outcomes. This paper presents a new approach to estimate UV doses without the use of dosimeters. By combining new satellite-derived UV data to account for environmental factors and simulation-based exposure ratio (ER) modelling to account for individual factors, we are able to estimate doses for specific exposure periods. This is a significant step forward for alternative dosimetry techniques which have previously been limited to annual dose estimation. We compare our dose estimates with dosimeter measurements from skiers and builders in Switzerland. The dosimetry measurements are expected to be slightly below the true doses due to a variety of dosimeter-related measurement errors, mostly explaining why our estimates are greater than or equal to the corresponding dosimetry measurements. Our approach holds much promise as a low-cost way to either complement or substitute traditional dosimetry. It can be applied in a research context, but is also fundamentally well-suited to be used as the basis for a dose-estimating mobile app that does not require an external device.


2021 ◽  
Author(s):  
Xiaoke Zhang ◽  
Zongsheng Hu ◽  
Guoliang Zhang ◽  
Yongdong Zhuang ◽  
Yuenan Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document