scholarly journals Common neural and transcriptional correlates of inhibitory control underlie emotion regulation and memory control

2020 ◽  
Vol 15 (5) ◽  
pp. 523-536 ◽  
Author(s):  
Wei Liu ◽  
Nancy Peeters ◽  
Guillén Fernández ◽  
Nils Kohn

Abstract Inhibitory control is crucial for regulating emotions and may also enable memory control. However, evidence for their shared neurobiological correlates is limited. Here, we report meta-analyses of neuroimaging studies on emotion regulation, or memory control and link neural commonalities to transcriptional commonalities using the Allen Human Brain Atlas (AHBA). Based on 95 functional magnetic resonance imaging studies, we reveal a role of the right inferior parietal lobule embedded in a frontal–parietal–insular network during emotion regulation and memory control, which is similarly recruited during response inhibition. These co-activation patterns also overlap with the networks associated with ‘inhibition’, ‘cognitive control’ and ‘working memory’ when consulting the Neurosynth. Using the AHBA, we demonstrate that emotion regulation- and memory control-related brain activity patterns are associated with transcriptional profiles of a specific set of ‘inhibition-related’ genes. Gene ontology enrichment analysis of these ‘inhibition-related’ genes reveal associations with the neuronal transmission and risk for major psychiatric disorders as well as seizures and alcoholic dependence. In summary, this study identified a neural network and a set of genes associated with inhibitory control across emotion regulation and memory control. These findings facilitate our understanding of the neurobiological correlates of inhibitory control and may contribute to the development of brain stimulation and pharmacological interventions.

2019 ◽  
Author(s):  
Wei Liu ◽  
Nancy Peeters ◽  
Guillén Fernández ◽  
Nils Kohn

AbstractInhibitory control is crucial for regulating emotions, and it may also enable memory control. However, evidence for their shared neurobiological correlates is limited. Here, we report meta-analyses of neuroimaging studies on emotion regulation, or memory control, and link neural commonalities to transcriptional commonalities using the Allen Human Brain Atlas (AHBA). Based on 95 fMRI studies, we reveal a role of the right inferior parietal lobule embedded in a frontal-parietal-insular network during emotion and memory control, which is similarly recruited during response inhibition. These co-activation patterns also overlap with the networks associated with “inhibition”, “cognitive control”, and “working memory” when consulting the Neurosynth. Using the AHBA, we demonstrate that emotion and memory control-related brain activity patterns are associated with transcriptional profiles of a specific set of “inhibition-related” genes. Gene ontology enrichment analysis of these “inhibition-related” genes reveal associations with the neuronal transmission and risk for major psychiatric disorders as well as seizures and alcoholic dependence. In summary, this study identified a neural network and a set of genes associated with inhibitory control across emotion regulation, memory control. These findings facilitate our understanding of the neurobiological correlates of inhibitory control and may contribute to the development of novel brain stimulation and pharmacological interventions.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Meir Meshulam ◽  
Liat Hasenfratz ◽  
Hanna Hillman ◽  
Yun-Fei Liu ◽  
Mai Nguyen ◽  
...  

AbstractDespite major advances in measuring human brain activity during and after educational experiences, it is unclear how learners internalize new content, especially in real-life and online settings. In this work, we introduce a neural approach to predicting and assessing learning outcomes in a real-life setting. Our approach hinges on the idea that successful learning involves forming the right set of neural representations, which are captured in canonical activity patterns shared across individuals. Specifically, we hypothesized that learning is mirrored in neural alignment: the degree to which an individual learner’s neural representations match those of experts, as well as those of other learners. We tested this hypothesis in a longitudinal functional MRI study that regularly scanned college students enrolled in an introduction to computer science course. We additionally scanned graduate student experts in computer science. We show that alignment among students successfully predicts overall performance in a final exam. Furthermore, within individual students, we find better learning outcomes for concepts that evoke better alignment with experts and with other students, revealing neural patterns associated with specific learned concepts in individuals.


2019 ◽  
Author(s):  
S. A. Herff ◽  
C. Herff ◽  
A. J. Milne ◽  
G. D. Johnson ◽  
J. J. Shih ◽  
...  

AbstractRhythmic auditory stimuli are known to elicit matching activity patterns in neural populations. Furthermore, recent research has established the particular importance of high-gamma brain activity in auditory processing by showing its involvement in auditory phrase segmentation and envelope-tracking. Here, we use electrocorticographic (ECoG) recordings from eight human listeners, to see whether periodicities in high-gamma activity track the periodicities in the envelope of musical rhythms during rhythm perception and imagination. Rhythm imagination was elicited by instructing participants to imagine the rhythm to continue during pauses of several repetitions. To identify electrodes whose periodicities in high-gamma activity track the periodicities in the musical rhythms, we compute the correlation between the autocorrelations (ACC) of both the musical rhythms and the neural signals. A condition in which participants listened to white noise was used to establish a baseline. High-gamma autocorrelations in auditory areas in the superior temporal gyrus and in frontal areas on both hemispheres significantly matched the autocorrelation of the musical rhythms. Overall, numerous significant electrodes are observed on the right hemisphere. Of particular interest is a large cluster of electrodes in the right prefrontal cortex that is active during both rhythm perception and imagination. This indicates conscious processing of the rhythms’ structure as opposed to mere auditory phenomena. The ACC approach clearly highlights that high-gamma activity measured from cortical electrodes tracks both attended and imagined rhythms.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Weidong Cai ◽  
Katherine Duberg ◽  
Aarthi Padmanabhan ◽  
Rachel Rehert ◽  
Travis Bradley ◽  
...  

Abstract Inhibitory control is fundamental to children’s self-regulation and cognitive development. Here we investigate cortical-basal ganglia pathways underlying inhibitory control in children and their adult-like maturity. We first conduct a comprehensive meta-analysis of extant neurodevelopmental studies of inhibitory control and highlight important gaps in the literature. Second, we examine cortical-basal ganglia activation during inhibitory control in children ages 9–12 and demonstrate the formation of an adult-like inhibitory control network by late childhood. Third, we develop a neural maturation index (NMI), which assesses the similarity of brain activation patterns between children and adults, and demonstrate that higher NMI in children predicts better inhibitory control. Fourth, we show that activity in the subthalamic nucleus and its effective connectivity with the right anterior insula predicts children’s inhibitory control. Fifth, we replicate our findings across multiple cohorts. Our findings provide insights into cortical-basal ganglia circuits and global brain organization underlying the development of inhibitory control.


2016 ◽  
Vol 12 (1) ◽  
pp. 71-83 ◽  
Author(s):  
A Cristina Vidal ◽  
Paula Banca ◽  
Augusto G Pascoal ◽  
Gustavo C Santo ◽  
João Sargento-Freitas ◽  
...  

Background Understanding of interhemispheric interactions in stroke patients during motor control is an important clinical neuroscience quest that may provide important clues for neurorehabilitation. In stroke patients, bilateral overactivation in both hemispheres has been interpreted as a poor prognostic indicator of functional recovery. In contrast, ipsilesional patterns have been linked with better motor outcomes. Aim We investigated the pathophysiology of hemispheric interactions during limb movement without and with contralateral restraint, to mimic the effects of constraint-induced movement therapy. We used neuroimaging to probe brain activity with such a movement-dependent interhemispheric modulation paradigm. Methods We used an fMRI block design during which the plegic/paretic upper limb was recruited/mobilized to perform unilateral arm elevation, as a function of presence versus absence of contralateral limb restriction ( n = 20, with balanced left/right lesion sites). Results Analysis of 10 right-hemispheric stroke participants yielded bilateral sensorimotor cortex activation in all movement phases in contrast with the unilateral dominance seen in the 10 left-hemispheric stroke participants. Superimposition of contralateral restriction led to a prominent shift from activation to deactivation response patterns, in particular in cortical and basal ganglia motor areas in right-hemispheric stroke. Left-hemispheric stroke was in general characterized by reduced activation patterns, even in the absence of restriction, which induced additional cortical silencing. Conclusion The observed hemispheric-dependent activation/deactivation shifts are novel and these pathophysiological observations suggest short-term neuroplasticity that may be useful for hemisphere-tailored neurorehabilitation.


2021 ◽  
pp. 1-13
Author(s):  
Zeguo Qiu ◽  
Junjing Wang

Abstract Background Previous literature has extensively investigated the brain activity during response inhibition in adults with addiction. Inconsistent results including both hyper- and hypo-activities in the fronto-parietal network (FPN) and the ventral attention network (VAN) have been found in adults with addictions, compared with healthy controls (HCs). Methods Voxel-wise meta-analyses of abnormal task-evoked regional activity were conducted for adults with substance dependence (SD) and behavioral addiction during response inhibition tasks to solve previous inconsistencies. Twenty-three functional magnetic resonance imaging studies including 479 substance users, 38 individuals with behavioral addiction and 494 HCs were identified. Results Compared with HCs, all addictions showed hypo-activities in regions within FPN (inferior frontal gyrus and supramarginal gyrus) and VAN (inferior frontal gyrus, middle temporal gyrus, temporal pole and insula), and hyper-activities in the cerebellum during response inhibition. SD subgroup showed almost the same activity patterns, with an additional hypoactivation of the precentral gyrus, compared with HCs. Stronger activation of the cerebellum was associated with longer addiction duration for adults with SD. We could not conduct meta-analytic investigations into the behavioral addiction subgroup due to the small number of datasets. Conclusion This meta-analysis revealed altered activation of FPN, VAN and the cerebellum in adults with addiction during response inhibition tasks using non-addiction-related stimuli. Although FPN and VAN showed lower activity, the cerebellum exhibited stronger activity. These results may help to understand the neural pathology of response inhibition in addiction.


2010 ◽  
Vol 103 (1) ◽  
pp. 360-370 ◽  
Author(s):  
Vincenzo Maffei ◽  
Emiliano Macaluso ◽  
Iole Indovina ◽  
Guy Orban ◽  
Francesco Lacquaniti

Neural substrates for processing constant speed visual motion have been extensively studied. Less is known about the brain activity patterns when the target speed changes continuously, for instance under the influence of gravity. Using functional MRI (fMRI), here we compared brain responses to accelerating/decelerating targets with the responses to constant speed targets. The target could move along the vertical under gravity (1 g), under reversed gravity (−1 g), or at constant speed (0 g). In the first experiment, subjects observed targets moving in smooth motion and responded to a GO signal delivered at a random time after target arrival. As expected, we found that the timing of the motor responses did not depend significantly on the specific motion law. Therefore brain activity in the contrast between different motion laws was not related to motor timing responses. Average BOLD signals were significantly greater for 1 g targets than either 0 g or −1 g targets in a distributed network including bilateral insulae, left lingual gyrus, and brain stem. Moreover, in these regions, the mean activity decreased monotonically from 1 g to 0 g and to −1 g. In the second experiment, subjects intercepted 1 g, 0 g, and −1 g targets either in smooth motion (RM) or in long-range apparent motion (LAM). We found that the sites in the right insula and left lingual gyrus, which were selectively engaged by 1 g targets in the first experiment, were also significantly more active during 1 g trials than during −1 g trials both in RM and LAM. The activity in 0 g trials was again intermediate between that in 1 g trials and that in −1 g trials. Therefore in these regions the global activity modulation with the law of vertical motion appears to hold for both RM and LAM. Instead, a region in the inferior parietal lobule showed a preference for visual gravitational motion only in LAM but not RM.


2019 ◽  
Author(s):  
Lau M. Andersen ◽  
Christoph Pfeiffer ◽  
Silvia Ruffieux ◽  
Bushra Riaz ◽  
Dag Winkler ◽  
...  

AbstractMagnetoencephalography (MEG) has a unique capacity to resolve the spatio-temporal development of brain activity from non-invasive measurements. Conventional MEG, however, relies on sensors that sample from a distance (20-40 mm) to the head due to thermal insulation requirements (the MEG sensors function at 4 K in a helmet). A gain in signal strength and spatial resolution may be achieved if sensors are moved closer to the head. Here, we report a study comparing measurements from a seven-channel on-scalp SQUID MEG system to those from a conventional (in-helmet) SQUID MEG system.We compared spatio-temporal resolution between on-scalp and conventional MEG by comparing the discrimination accuracy for neural activity patterns resulting from stimulating five different phalanges of the right hand. Because of proximity and sensor density differences between on-scalp and conventional MEG, we hypothesized that on-scalp MEG would allow for a more high-resolved assessment of these activity patterns, and therefore also a better classification performance in discriminating between neural activations from the different phalanges.We observed that on-scalp MEG provided better classification performance during an early post-stimulus period (15-30 ms). This corresponded to electroencephalographic (EEG) response components N16 and P23, and was an unexpected observation as these components are usually not observed in conventional MEG. They indicate that on-scalp MEG opens up for a richer registration of the cortical signal, allowing for sensitivity to what are potentially sources in the thalamo-cortical radiation and to quasi-radial sources.We had originally expected that on-scalp MEG would provide better classification accuracy based on activity in proximity to the P60m component compared to conventional MEG. This component indeed allowed for the best classification performance for both MEG systems (60-75%, chance 50%). However, we did not find that on-scalp MEG allowed for better classification than conventional MEG at this latency. We believe this may be due to the limited sensor coverage in the recording, in combination with our strategy for positioning the on-scalp MEG sensors. We discuss how sensor density and coverage as well as between-phalange source field dissimilarities may influence our hypothesis testing, which we believe to be useful for future benchmarking measurements.


2019 ◽  
Author(s):  
Guido Barchiesi ◽  
Gianpaolo Demarchi ◽  
Frank H. Wilhelm ◽  
Anne Hauswald ◽  
Gaëtan Sanchez ◽  
...  

AbstractMuscular activity recording is of high basic science and clinical relevance and is typically achieved using electromyography (EMG). While providing detailed information about the state of a specific muscle, this technique has limitations such as the need for a-priori assumptions about electrode placement and difficulty with recording muscular activity patterns from extended body areas at once. For head and face muscle activity, the present work aimed to overcome these restrictions by exploiting magnetoencephalography (MEG) as a whole-head myographic recorder (head magnetomyography, hMMG). This is in contrast to common MEG studies, which treat muscular activity as artifact in electromagnetic brain activity. In a first proof-of-concept step, participants imitated emotional facial expressions performed by a model. Exploiting source projection algorithms, we were able to reconstruct muscular activity, showing spatial activation patterns in accord with the hypothesized muscular contractions. Going one step further, participants passively observed affective pictures with negative, neutral, or positive valence. Applying multivariate pattern analysis to the reconstructed hMMG signal, we were able to decode above chance the valence category of the presented pictures. Underlining the potential of hMMG, a searchlight analysis revealed that generally neglected neck muscles exhibit information on stimulus valence. Results confirm the utility of hMMG as a whole-head electromyographic recorder to quantify muscular activation patterns including muscular regions that are typically not recorded with EMG. This key advantage beyond conventional EMG has substantial scientific and clinical potential.


2017 ◽  
Vol 29 (3) ◽  
pp. 545-559 ◽  
Author(s):  
Nina Becker ◽  
Grégoria Kalpouzos ◽  
Jonas Persson ◽  
Erika J. Laukka ◽  
Yvonne Brehmer

Evidence from neuroimaging studies suggests a critical role of hippocampus and inferior frontal gyrus (IFG) in associative relative to item encoding. Here, we investigated similarities and differences in functional brain correlates for associative and item memory as a function of encoding instruction. Participants received either incidental (animacy judgments) or intentional encoding instructions while fMRI was employed during the encoding of associations and items. In a subsequent recognition task, memory performance of participants receiving intentional encoding instructions was higher compared with those receiving incidental encoding instructions. Furthermore, participants remembered more items than associations, regardless of encoding instruction. Greater brain activation in the left anterior hippocampus was observed for intentionally compared with incidentally encoded associations, although activity in this region was not modulated by the type of instruction for encoded items. Furthermore, greater activity in the left anterior hippocampus and left IFG was observed during intentional associative compared with item encoding. The same regions were related to subsequent memory of intentionally encoded associations and were thus task relevant. Similarly, connectivity of the anterior hippocampus to the right superior temporal lobe and IFG was uniquely linked to subsequent memory of intentionally encoded associations. Our study demonstrates the differential involvement of anterior hippocampus in intentional relative to incidental associative encoding. This finding likely reflects that the intent to remember triggers a specific binding process accomplished by this region.


Sign in / Sign up

Export Citation Format

Share Document