scholarly journals Prefrontal High Gamma in ECoG tags periodicity of musical rhythms in perception and imagination

2019 ◽  
Author(s):  
S. A. Herff ◽  
C. Herff ◽  
A. J. Milne ◽  
G. D. Johnson ◽  
J. J. Shih ◽  
...  

AbstractRhythmic auditory stimuli are known to elicit matching activity patterns in neural populations. Furthermore, recent research has established the particular importance of high-gamma brain activity in auditory processing by showing its involvement in auditory phrase segmentation and envelope-tracking. Here, we use electrocorticographic (ECoG) recordings from eight human listeners, to see whether periodicities in high-gamma activity track the periodicities in the envelope of musical rhythms during rhythm perception and imagination. Rhythm imagination was elicited by instructing participants to imagine the rhythm to continue during pauses of several repetitions. To identify electrodes whose periodicities in high-gamma activity track the periodicities in the musical rhythms, we compute the correlation between the autocorrelations (ACC) of both the musical rhythms and the neural signals. A condition in which participants listened to white noise was used to establish a baseline. High-gamma autocorrelations in auditory areas in the superior temporal gyrus and in frontal areas on both hemispheres significantly matched the autocorrelation of the musical rhythms. Overall, numerous significant electrodes are observed on the right hemisphere. Of particular interest is a large cluster of electrodes in the right prefrontal cortex that is active during both rhythm perception and imagination. This indicates conscious processing of the rhythms’ structure as opposed to mere auditory phenomena. The ACC approach clearly highlights that high-gamma activity measured from cortical electrodes tracks both attended and imagined rhythms.

2021 ◽  
Author(s):  
Florian Destoky ◽  
Julie Bertels ◽  
Maxime Niesen ◽  
Vincent Wens ◽  
Marc Vander Ghinst ◽  
...  

Dyslexia is a frequent developmental disorder in which reading acquisition is delayed and that is usually associated with difficulties understanding speech in noise. At the neuronal level, children with dyslexia were reported to display abnormal cortical tracking of speech (CTS) at phrasal rate. Here, we aimed to determine if abnormal tracking is a cause or a consequence of dyslexia and if it is modulated by the severity of dyslexia or the presence of acoustic noise. We included 26 school-age children with dyslexia, 26 age-matched controls and 26 reading-level matched controls. All were native French speakers. Children's brain activity was recorded with magnetoencephalography while they listened to continuous speech in noiseless and multiple noise conditions. CTS values were compared between groups, conditions and hemispheres, and also within groups, between children with best and worse reading performance. Syllabic CTS was significantly reduced in the right superior temporal gyrus in children with dyslexia compared with controls matched for age but not for reading level. Among children with dyslexia, phrasal CTS tended to lateralize to the left hemisphere in severe dyslexia and lateralized to the right hemisphere in children with mild dyslexia and in all control groups. Finally, phrasal CTS was lower in children with dyslexia compared with age-matched controls, but only in informational noise conditions. No such effect was seen in comparison with reading-level matched controls. Overall, our results confirmed the finding of altered neuronal basis of speech perception in noiseless and babble noise conditions in dyslexia compared with age-matched peers. However, the absence of alteration in comparison with reading-level matched controls suggests that such alterations are a consequence of reduced reading experience rather than a cause of dyslexia.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Meir Meshulam ◽  
Liat Hasenfratz ◽  
Hanna Hillman ◽  
Yun-Fei Liu ◽  
Mai Nguyen ◽  
...  

AbstractDespite major advances in measuring human brain activity during and after educational experiences, it is unclear how learners internalize new content, especially in real-life and online settings. In this work, we introduce a neural approach to predicting and assessing learning outcomes in a real-life setting. Our approach hinges on the idea that successful learning involves forming the right set of neural representations, which are captured in canonical activity patterns shared across individuals. Specifically, we hypothesized that learning is mirrored in neural alignment: the degree to which an individual learner’s neural representations match those of experts, as well as those of other learners. We tested this hypothesis in a longitudinal functional MRI study that regularly scanned college students enrolled in an introduction to computer science course. We additionally scanned graduate student experts in computer science. We show that alignment among students successfully predicts overall performance in a final exam. Furthermore, within individual students, we find better learning outcomes for concepts that evoke better alignment with experts and with other students, revealing neural patterns associated with specific learned concepts in individuals.


Author(s):  
Viktória Tamás ◽  
Gabriella Sebestyén ◽  
Szilvia Anett Nagy ◽  
Péter Zsolt Horváth ◽  
Ákos Mérei ◽  
...  

AbstractNeglect is a severe neuropsychological/neurological deficit that usually develops due to lesions of the posterior inferior parietal area of the right hemisphere and is characterized by a lack of attention to the left side. Our case is a proven right-handed, 30-year-old female patient with a low-grade glioma, which was located in the temporo-opercular region and also in the superior temporal gyrus of the right hemisphere. Upon presurgical planning, the motor, language, and visuospatial functions were mapped. In order to achieve this, the protocol for routine magnetic resonance imaging and navigated transcranial magnetic stimulation has been expanded, accordingly.


2008 ◽  
Vol 20 (12) ◽  
pp. 2185-2197 ◽  
Author(s):  
Jennifer T. Coull ◽  
Bruno Nazarian ◽  
Franck Vidal

The temporal discrimination paradigm requires subjects to compare the duration of a probe stimulus to that of a sample previously stored in working or long-term memory, thus providing an index of timing that is independent of a motor response. However, the estimation process itself comprises several component cognitive processes, including timing, storage, retrieval, and comparison of durations. Previous imaging studies have attempted to disentangle these components by simply measuring brain activity during early versus late scanning epochs. We aim to improve the temporal resolution and precision of this approach by using rapid event-related functional magnetic resonance imaging to time-lock the hemodynamic response to presentation of the sample and probe stimuli themselves. Compared to a control (color-estimation) task, which was matched in terms of difficulty, sustained attention, and motor preparation requirements, we found selective activation of the left putamen for the storage (“encoding”) of stimulus duration into working memory (WM). Moreover, increased putamen activity was linked to enhanced timing performance, suggesting that the level of putamen activity may modulate the depth of temporal encoding. Retrieval and comparison of stimulus duration in WM selectively activated the right superior temporal gyrus. Finally, the supplementary motor area was equally active during both sample and probe stages of the task, suggesting a fundamental role in timing the duration of a stimulus that is currently unfolding in time.


1992 ◽  
Vol 12 (4) ◽  
pp. 546-553 ◽  
Author(s):  
Steven Warach ◽  
Ruben C. Gur ◽  
Raquel E. Gur ◽  
Brett E. Skolnick ◽  
Walter D. Obrist ◽  
...  

We previously reported decreased mean CBF between consecutive resting conditions, ascribed to habituation. Here we address the regional specificity of habituation over three consecutive flow studies. Regional CBF (rCBF) was measured in 55 adults (12 right-handed men, 12 right-handed women, 14 left-handed men, 17 left-handed women), with the 133Xe inhalation technique, during three conditions: Resting, verbal tasks (analogies), and spatial tasks (line orientation). Changes in rCBF attributable to the cognitive tasks were eliminated by correcting these values to a resting equivalent. There was a progressive decrease in mean rCBF over time, reflecting habituation. This effect differed by region, with specificity at frontal (prefrontal, inferior frontal, midfrontal, superior frontal) and inferior parietal regions. In the inferior parietal region, habituation was more marked in the left than the right hemisphere. Right-handers showed greater habituation than did left-handers. There was no sex difference in global habituation, but males showed greater left whereas females showed greater right hemispheric habituation. The results suggest that habituation to the experimental setting has measurable effects on rCBF, which are differently lateralized for men and women. These effects are superimposed on task activation and are most pronounced in regions that have been implicated in attentional processes. Thus, regional decrement in brain activity related to habituation seems to complement attentional effects, suggesting a neural network for habituation reciprocating that for attention.


2005 ◽  
Vol 93 (2) ◽  
pp. 1020-1034 ◽  
Author(s):  
Eiichi Naito ◽  
Per E. Roland ◽  
Christian Grefkes ◽  
H. J. Choi ◽  
Simon Eickhoff ◽  
...  

We have previously shown that motor areas are engaged when subjects experience illusory limb movements elicited by tendon vibration. However, traditionally cytoarchitectonic area 2 is held responsible for kinesthesia. Here we use functional magnetic resonance imaging and cytoarchitectural mapping to examine whether area 2 is engaged in kinesthesia, whether it is engaged bilaterally because area 2 in non-human primates has strong callosal connections, which other areas are active members of the network for kinesthesia, and if there is a dominance for the right hemisphere in kinesthesia as has been suggested. Ten right-handed blindfolded healthy subjects participated. The tendon of the extensor carpi ulnaris muscles of the right or left hand was vibrated at 80 Hz, which elicited illusory palmar flexion in an immobile hand (illusion). As control we applied identical stimuli to the skin over the processus styloideus ulnae, which did not elicit any illusions (vibration). We found robust activations in cortical motor areas [areas 4a, 4p, 6; dorsal premotor cortex (PMD) and bilateral supplementary motor area (SMA)] and ipsilateral cerebellum during kinesthetic illusions (illusion-vibration). The illusions also activated contralateral area 2 and right area 2 was active in common irrespective of illusions of right or left hand. Right areas 44, 45, anterior part of intraparietal region (IP1) and caudo-lateral part of parietal opercular region (OP1), cortex rostral to PMD, anterior insula and superior temporal gyrus were also activated in common during illusions of right or left hand. These right-sided areas were significantly more activated than the corresponding areas in the left hemisphere. The present data, together with our previous results, suggest that human kinesthesia is associated with a network of active brain areas that consists of motor areas, cerebellum, and the right fronto-parietal areas including high-order somatosensory areas. Furthermore, our results provide evidence for a right hemisphere dominance for perception of limb movement.


2021 ◽  
Vol 15 ◽  
Author(s):  
Yan He ◽  
Yinying Hu ◽  
Yaxi Yang ◽  
Defeng Li ◽  
Yi Hu

Recent neuroimaging research has suggested that unequal cognitive efforts exist between interpreting from language 1 (L1) to language 2 (L2) compared with interpreting from L2 to L1. However, the neural substrates that underlie this directionality effect are not yet well understood. Whether directionality is modulated by interpreting expertise also remains unknown. In this study, we recruited two groups of Mandarin (L1)/English (L2) bilingual speakers with varying levels of interpreting expertise and asked them to perform interpreting and reading tasks. Functional near-infrared spectroscopy (fNIRS) was used to collect cortical brain data for participants during each task, using 68 channels that covered the prefrontal cortex and the bilateral perisylvian regions. The interpreting-related neuroimaging data was normalized by using both L1 and L2 reading tasks, to control the function of reading and vocalization respectively. Our findings revealed the directionality effect in both groups, with forward interpreting (from L1 to L2) produced more pronounced brain activity, when normalized for reading. We also found that directionality was modulated by interpreting expertise in both normalizations. For the group with relatively high expertise, the activated brain regions included the right Broca’s area and the left premotor and supplementary motor cortex; whereas for the group with relatively low expertise, the activated brain areas covered the superior temporal gyrus, the dorsolateral prefrontal cortex (DLPFC), the Broca’s area, and visual area 3 in the right hemisphere. These findings indicated that interpreting expertise modulated brain activation, possibly because of more developed cognitive skills associated with executive functions in experienced interpreters.


2021 ◽  
Author(s):  
Meytal Wilf ◽  
Celine Dupuis ◽  
Davide Nardo ◽  
Diana Huber ◽  
Sibilla Sander ◽  
...  

Our everyday life summons numerous novel sensorimotor experiences, to which our brain needs to adapt in order to function properly. However, tracking plasticity of naturalistic behaviour and associated brain modulations is challenging. Here we tackled this question implementing a prism adaptation training in virtual reality (VRPA) in combination with functional neuroimaging. Three groups of healthy participants (N=45) underwent VRPA (with a spatial shift either to the left/right side, or with no shift), and performed fMRI sessions before and after training. To capture modulations in free-flowing, task-free brain activity, the fMRI sessions included resting state and free viewing of naturalistic videos. We found significant decreases in spontaneous functional connectivity between large-scale cortical networks, namely attentional and default mode/fronto-parietal networks, only for adaptation groups. Additionally, VRPA was found to bias visual representations of naturalistic videos, as following rightward adaptation, we found upregulation of visual response in an area in the parieto-occipital sulcus (POS) in the right hemisphere. Notably, the extent of POS upregulation correlated with the size of the VRPA induced after-effect measured in behavioural tests. This study demonstrates that a brief VRPA exposure is able to change large-scale cortical connectivity and correspondingly bias the representation of naturalistic sensory inputs.


2014 ◽  
Vol 28 (1) ◽  
pp. 32-46 ◽  
Author(s):  
Eligiusz Wronka ◽  
Wioleta Walentowska

Recent ERP studies demonstrate that the processing of facial emotional expression can be modulated by attention. The aim of the present study was to investigate the neural correlates of attentional influence on the emotional expression processing at early stages. We recorded ERP responses to facial stimuli containing neutral versus emotional expression in two different conditions. The first task was to discriminate facial expressions, while the second task was to categorize face gender. Enhanced positivity at occipital and occipito-temporal locations between 110 and 170 ms poststimulus was elicited by facial stimuli presented in the expression task when compared to the gender task. This effect temporally overlapped with the P1 and N170 components, which reflect the early stages of face processing. To localize the sources of the brain activity underlying observed attentional modulation, we used Standardized Low Resolution Electromagnetic Tomography. Enhanced activity within the extrastriate cortex for the expression task was obtained as the reflection of early ERP effect. Additionally, we found stronger activation within the superior temporal and the fusiform gyrus of the right hemisphere in the expression task when compared to the gender task. Our findings undoubtedly confirm that early stages of the emotional expression processing can be modified by top-down attention.


2010 ◽  
Vol 103 (1) ◽  
pp. 360-370 ◽  
Author(s):  
Vincenzo Maffei ◽  
Emiliano Macaluso ◽  
Iole Indovina ◽  
Guy Orban ◽  
Francesco Lacquaniti

Neural substrates for processing constant speed visual motion have been extensively studied. Less is known about the brain activity patterns when the target speed changes continuously, for instance under the influence of gravity. Using functional MRI (fMRI), here we compared brain responses to accelerating/decelerating targets with the responses to constant speed targets. The target could move along the vertical under gravity (1 g), under reversed gravity (−1 g), or at constant speed (0 g). In the first experiment, subjects observed targets moving in smooth motion and responded to a GO signal delivered at a random time after target arrival. As expected, we found that the timing of the motor responses did not depend significantly on the specific motion law. Therefore brain activity in the contrast between different motion laws was not related to motor timing responses. Average BOLD signals were significantly greater for 1 g targets than either 0 g or −1 g targets in a distributed network including bilateral insulae, left lingual gyrus, and brain stem. Moreover, in these regions, the mean activity decreased monotonically from 1 g to 0 g and to −1 g. In the second experiment, subjects intercepted 1 g, 0 g, and −1 g targets either in smooth motion (RM) or in long-range apparent motion (LAM). We found that the sites in the right insula and left lingual gyrus, which were selectively engaged by 1 g targets in the first experiment, were also significantly more active during 1 g trials than during −1 g trials both in RM and LAM. The activity in 0 g trials was again intermediate between that in 1 g trials and that in −1 g trials. Therefore in these regions the global activity modulation with the law of vertical motion appears to hold for both RM and LAM. Instead, a region in the inferior parietal lobule showed a preference for visual gravitational motion only in LAM but not RM.


Sign in / Sign up

Export Citation Format

Share Document