Altered neural activities during response inhibition in adults with addiction: a voxel-wise meta-analysis

2021 ◽  
pp. 1-13
Author(s):  
Zeguo Qiu ◽  
Junjing Wang

Abstract Background Previous literature has extensively investigated the brain activity during response inhibition in adults with addiction. Inconsistent results including both hyper- and hypo-activities in the fronto-parietal network (FPN) and the ventral attention network (VAN) have been found in adults with addictions, compared with healthy controls (HCs). Methods Voxel-wise meta-analyses of abnormal task-evoked regional activity were conducted for adults with substance dependence (SD) and behavioral addiction during response inhibition tasks to solve previous inconsistencies. Twenty-three functional magnetic resonance imaging studies including 479 substance users, 38 individuals with behavioral addiction and 494 HCs were identified. Results Compared with HCs, all addictions showed hypo-activities in regions within FPN (inferior frontal gyrus and supramarginal gyrus) and VAN (inferior frontal gyrus, middle temporal gyrus, temporal pole and insula), and hyper-activities in the cerebellum during response inhibition. SD subgroup showed almost the same activity patterns, with an additional hypoactivation of the precentral gyrus, compared with HCs. Stronger activation of the cerebellum was associated with longer addiction duration for adults with SD. We could not conduct meta-analytic investigations into the behavioral addiction subgroup due to the small number of datasets. Conclusion This meta-analysis revealed altered activation of FPN, VAN and the cerebellum in adults with addiction during response inhibition tasks using non-addiction-related stimuli. Although FPN and VAN showed lower activity, the cerebellum exhibited stronger activity. These results may help to understand the neural pathology of response inhibition in addiction.

2021 ◽  
Author(s):  
Yoshiharu Ikutani ◽  
Takeshi D. Itoh ◽  
Takatomi Kubo

AbstractThe understanding of brain activity during program comprehension have advanced thanks to noninvasive neuroimaging techniques, such as functional magnetic resonance imaging (fMRI). However, individual neuroimaging studies of program comprehension often provided inconsistent results and made it difficult to identify the neural bases. To identify the essential brain regions, this study performed a small meta-analysis on recent fMRI studies of program comprehension using multilevel kernel density analysis (MKDA). Our analysis identified a set of brain regions consistently activated in various program comprehension tasks. These regions consisted of three clusters, each of which centered at the left inferior frontal gyrus pars triangularis (IFG Tri), posterior part of middle temporal gyrus (pMTG), and right middle frontal gyrus (MFG). Additionally, subsequent analyses revealed relationships among the activation patterns in the previous studies and multiple cognitive functions. These findings suggest that program comprehension mainly recycles the language-related networks and partially employs other domain-general resources in the human brain.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Christopher N. Cascio ◽  
Nina Lauharatanahirun ◽  
Gwendolyn M. Lawson ◽  
Martha J. Farah ◽  
Emily B. Falk

AbstractResponse inhibition and socioeconomic status (SES) are critical predictors of many important outcomes, including educational attainment and health. The current study extends our understanding of SES and cognition by examining brain activity associated with response inhibition, during the key developmental period of adolescence. Adolescent males (N = 81), aged 16–17, completed a response inhibition task while undergoing fMRI brain imaging and reported on their parents’ education, one component of socioeconomic status. A region of interest analysis showed that parental education was associated with brain activation differences in the classic response inhibition network (right inferior frontal gyrus + subthalamic nucleus + globus pallidus) despite the absence of consistent parental education-performance effects. Further, although activity in our main regions of interest was not associated with performance differences, several regions that were associated with better inhibitory performance (ventromedial prefrontal cortex, middle frontal gyrus, middle temporal gyrus, amygdala/hippocampus) also differed in their levels of activation according to parental education. Taken together, these results suggest that individuals from households with higher versus lower parental education engage key brain regions involved in response inhibition to differing degrees, though these differences may not translate into performance differences.


2021 ◽  
Vol 15 ◽  
Author(s):  
Bei Luo ◽  
Yue Lu ◽  
Chang Qiu ◽  
Wenwen Dong ◽  
Chen Xue ◽  
...  

BackgroundTransient improvement in motor symptoms are immediately observed in patients with Parkinson’s disease (PD) after an electrode has been implanted into the subthalamic nucleus (STN) for deep brain stimulation (DBS). This phenomenon is known as the microlesion effect (MLE). However, the underlying mechanisms of MLE is poorly understood.PurposeWe utilized resting state functional MRI (rs-fMRI) to evaluate changes in spontaneous brain activity and networks in PD patients during the microlesion period after DBS.MethodOverall, 37 PD patients and 13 gender- and age-matched healthy controls (HCs) were recruited for this study. Rs-MRI information was collected from PD patients three days before DBS and one day after DBS, whereas the HCs group was scanned once. We utilized the amplitude of low-frequency fluctuation (ALFF) method in order to analyze differences in spontaneous whole-brain activity among all subjects. Furthermore, functional connectivity (FC) was applied to investigate connections between other brain regions and brain areas with significantly different ALFF before and after surgery in PD patients.ResultRelative to the PD-Pre-DBS group, the PD-Post-DBS group had higher ALFF in the right putamen, right inferior frontal gyrus, right precentral gyrus and lower ALFF in right angular gyrus, right precuneus, right posterior cingulate gyrus (PCC), left insula, left middle temporal gyrus (MTG), bilateral middle frontal gyrus and bilateral superior frontal gyrus (dorsolateral). Functional connectivity analysis revealed that these brain regions with significantly different ALFF scores demonstrated abnormal FC, largely in the temporal, prefrontal cortices and default mode network (DMN).ConclusionThe subthalamic microlesion caused by DBS in PD was found to not only improve the activity of the basal ganglia-thalamocortical circuit, but also reduce the activity of the DMN and executive control network (ECN) related brain regions. Results from this study provide new insights into the mechanism of MLE.


2021 ◽  
Author(s):  
Richard J Binney ◽  
Veronica Diveica ◽  
Kami Koldewyn

Most leading models of socio-cognitive processing devote little discussion to the nature and neuroanatomical correlates of cognitive control mechanisms. Recently, it has been proposed that the regulation of social behaviours could rely on brain regions specialised in the controlled retrieval of semantic information, namely the anterior inferior frontal gyrus (IFG) and posterior middle temporal gyrus. Accordingly, we set out to investigate whether the neural activation commonly found in social functional neuroimaging studies extends to these semantic control regions. We conducted five coordinate-based meta-analyses to combine results of over 500 fMRI/PET experiments and identified the brain regions consistently involved in semantic control, as well as four social abilities: theory of mind, trait inference, empathy and moral reasoning. This allowed an unprecedented parallel review of the neural networks associated with each of these cognitive domains. The results confirmed that the anterior left IFG region involved in semantic control is reliably engaged in all four social domains. This suggests that social cognition could be partly regulated by the neurocognitive system underpinning semantic control.


2007 ◽  
Vol 19 (1) ◽  
pp. 69-80 ◽  
Author(s):  
Junichi Chikazoe ◽  
Seiki Konishi ◽  
Tomoki Asari ◽  
Koji Jimura ◽  
Yasushi Miyashita

The go/no-go task, which effectively taps the ability to inhibit prepotent response tendency, has consistently activated the lateral prefrontal cortex, particularly the right inferior frontal gyrus (rIFG). On the other hand, rIFG activation has rarely been reported in the antisaccade task, seemingly an oculomotor version of the manual go/no-go task. One possible explanation for the variable IFG activation is the modality difference of the two tasks: The go/no-go task is performed manually, whereas the antisaccade task is performed in the oculomotor modality. Another explanation is that these two tasks have different task structures that require different cognitive processes: The traditional antisaccade task requires (i) configuration of a preparatory set prior to antisaccade execution and (ii) response inhibition at the time of antisaccade execution, whereas the go/no-go task requires heightened response inhibition under a minimal preparatory set. To test these possibilities, the traditional antisaccade task was modified in the present functional magnetic resonance imaging study such that it required heightened response inhibition at the time of antisaccade execution under a minimal preparatory set. Prominent activation related to response inhibition was observed in multiple frontoparietal regions, including the rIFG. Moreover, meta-analyses revealed that the rIFG activation in the present study was observed in the go/no-go tasks but not in the traditional antisaccade task, indicating that the rIFG activation was sensitive to the task structure difference, but not to the response modality difference. These results suggest that the rIFG is part of a network active during response inhibition across different response modalities.


2009 ◽  
Vol 21 (10) ◽  
pp. 2007-2018 ◽  
Author(s):  
Marcus Meinzer ◽  
Tobias Flaisch ◽  
Lotte Wilser ◽  
Carsten Eulitz ◽  
Brigitte Rockstroh ◽  
...  

As we age, our ability to select and to produce words changes, yet we know little about the underlying neural substrate of word-finding difficulties in old adults. This study was designed to elucidate changes in specific frontally mediated retrieval processes involved in word-finding difficulties associated with advanced age. We implemented two overt verbal (semantic and phonemic) fluency tasks during fMRI and compared brain activity patterns of old and young adults. Performance during the phonemic task was comparable for both age groups and mirrored by strongly left-lateralized (frontal) activity patterns. On the other hand, a significant drop of performance during the semantic task in the older group was accompanied by additional right (inferior and middle) frontal activity, which was negatively correlated with performance. Moreover, the younger group recruited different subportions of the left inferior frontal gyrus for both fluency tasks, whereas the older participants failed to show this distinction. Thus, functional integrity and efficient recruitment of left frontal language areas seems to be critical for successful word retrieval in old age.


2019 ◽  
Vol 14 (8) ◽  
pp. 789-813 ◽  
Author(s):  
Josiane Jauniaux ◽  
Ali Khatibi ◽  
Pierre Rainville ◽  
Philip L Jackson

Abstract Empathy relies on brain systems that support the interaction between an observer’s mental state and cues about the others’ experience. Beyond the core brain areas typically activated in pain empathy studies (insular and anterior cingulate cortices), the diversity of paradigms used may reveal secondary networks that subserve other more specific processes. A coordinate-based meta-analysis of fMRI experiments on pain empathy was conducted to obtain activation likelihood estimates along three factors and seven conditions: visual cues (body parts, facial expressions), visuospatial (first-person, thirdperson), and cognitive (self-, stimuli-, other-oriented tasks) perspectives. The core network was found across cues and perspectives, and common activation was observed in higher-order visual areas. Body-parts distinctly activated areas related with sensorimotor processing (superior and inferior parietal lobules, anterior insula) while facial expression distinctly involved the inferior frontal gyrus. Self- compared to other-perspective produced distinct activations in the left insula while stimulus- versus other-perspective produced distinctive responses in the inferior frontal and parietal lobules, precentral gyrus, and cerebellum. Pain empathy relies on a core network which is modulated by several secondary networks. The involvement of the latter seems to depend on the visual cues available and the observer's mental state that can be influenced by specific instructions.


2020 ◽  
Vol 45 (9) ◽  
pp. 855-864
Author(s):  
Elisa Dal Bò ◽  
Claudio Gentili ◽  
Cinzia Cecchetto

Abstract Across phyla, chemosignals are a widely used form of social communication and increasing evidence suggests that chemosensory communication is present also in humans. Chemosignals can transfer, via body odors, socially relevant information, such as specific information about identity or emotional states. However, findings on neural correlates of processing of body odors are divergent. The aims of this meta-analysis were to assess the brain areas involved in the perception of body odors (both neutral and emotional) and the specific activation patterns for the perception of neutral body odor (NBO) and emotional body odor (EBO). We conducted an activation likelihood estimation (ALE) meta-analysis on 16 experiments (13 studies) examining brain activity during body odors processing. We found that the contrast EBO versus NBO resulted in significant convergence in the right middle frontal gyrus and the left cerebellum, whereas the pooled meta-analysis combining all the studies of human odors showed significant convergence in the right inferior frontal gyrus. No significant cluster was found for NBOs. However, our findings also highlight methodological heterogeneity across the existing literature. Further neuroimaging studies are needed to clarify and support the existing findings on neural correlates of processing of body odors.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Yingzhi Lu ◽  
Qi Zhao ◽  
Yingying Wang ◽  
Chenglin Zhou

Objective. This study aims at investigating differences in the spontaneous brain activity and functional connectivity in the sensorimotor system between ballroom dancers and nondancers, to further support the functional alteration in people with expertise. Materials and Methods. Twenty-three ballroom dancers and twenty-one matched novices with no dance experience were recruited in this study. Amplitude of low-frequency fluctuation (ALFF) and seed-based functional connectivity, as methods for assessing resting-state functional magnetic resonance imaging (rs-fMRI) data, were used to reveal the resting-state brain function in these participants. Results. Compared to the novices, ballroom dancers showed increased ALFF in the left middle temporal gyrus, bilateral precentral gyrus, bilateral inferior frontal gyrus, left postcentral gyrus, left inferior temporal gyrus, right middle occipital gyrus, right superior temporal gyrus, and left middle frontal gyrus. The ballroom dancers also demonstrated lower ALFF in the left lingual gyrus and altered functional connectivity between the inferior frontal gyrus and temporal, parietal regions. Conclusions. Our results indicated that ballroom dancers showed elevated neural activity in sensorimotor regions relative to novices and functional alterations in frontal-temporal and frontal-parietal connectivity, which may reflect specific training experience related to ballroom dancing, including high-capacity action perception, attentional control, and movement adjustment.


2020 ◽  
Vol 46 (4) ◽  
pp. 857-868
Author(s):  
Marie Arsalidou ◽  
Zachary Yaple ◽  
Tomas Jurcik ◽  
Vadim Ushakov

Abstract Deficits in cognitive function are a major characteristic of schizophrenia. Many functional magnetic resonance imaging (fMRI) studies examine brain correlates of cognitive function in adults with schizophrenia, showing altered implication of associative areas such as the prefrontal cortex and temporal cortex. fMRI studies also examine brain representation of cognitive function in adolescents with early onset schizophrenia and those at risk of the disorder, yet results are often inconsistent. We compile and analyze data from eligible fMRI studies using quantitative meta-analyses to reveal concordant brain activity associated with adolescent relatives of patients with schizophrenia and those with early onset schizophrenia. Results show similar functional hubs of brain activity (eg, precuneus) yet in opposite hemispheres and clusters in ventrolateral rather than dorsolateral prefrontal cortices. Other areas of altered implication include the middle temporal gyrus, insula, and cerebellum. We discuss the findings in reference to the protracted maturation of the prefrontal cortex and possible effects due to the medication status of the two groups.


Sign in / Sign up

Export Citation Format

Share Document