scholarly journals Processing of Targets in Smooth or Apparent Motion Along the Vertical in the Human Brain: An fMRI Study

2010 ◽  
Vol 103 (1) ◽  
pp. 360-370 ◽  
Author(s):  
Vincenzo Maffei ◽  
Emiliano Macaluso ◽  
Iole Indovina ◽  
Guy Orban ◽  
Francesco Lacquaniti

Neural substrates for processing constant speed visual motion have been extensively studied. Less is known about the brain activity patterns when the target speed changes continuously, for instance under the influence of gravity. Using functional MRI (fMRI), here we compared brain responses to accelerating/decelerating targets with the responses to constant speed targets. The target could move along the vertical under gravity (1 g), under reversed gravity (−1 g), or at constant speed (0 g). In the first experiment, subjects observed targets moving in smooth motion and responded to a GO signal delivered at a random time after target arrival. As expected, we found that the timing of the motor responses did not depend significantly on the specific motion law. Therefore brain activity in the contrast between different motion laws was not related to motor timing responses. Average BOLD signals were significantly greater for 1 g targets than either 0 g or −1 g targets in a distributed network including bilateral insulae, left lingual gyrus, and brain stem. Moreover, in these regions, the mean activity decreased monotonically from 1 g to 0 g and to −1 g. In the second experiment, subjects intercepted 1 g, 0 g, and −1 g targets either in smooth motion (RM) or in long-range apparent motion (LAM). We found that the sites in the right insula and left lingual gyrus, which were selectively engaged by 1 g targets in the first experiment, were also significantly more active during 1 g trials than during −1 g trials both in RM and LAM. The activity in 0 g trials was again intermediate between that in 1 g trials and that in −1 g trials. Therefore in these regions the global activity modulation with the law of vertical motion appears to hold for both RM and LAM. Instead, a region in the inferior parietal lobule showed a preference for visual gravitational motion only in LAM but not RM.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Meir Meshulam ◽  
Liat Hasenfratz ◽  
Hanna Hillman ◽  
Yun-Fei Liu ◽  
Mai Nguyen ◽  
...  

AbstractDespite major advances in measuring human brain activity during and after educational experiences, it is unclear how learners internalize new content, especially in real-life and online settings. In this work, we introduce a neural approach to predicting and assessing learning outcomes in a real-life setting. Our approach hinges on the idea that successful learning involves forming the right set of neural representations, which are captured in canonical activity patterns shared across individuals. Specifically, we hypothesized that learning is mirrored in neural alignment: the degree to which an individual learner’s neural representations match those of experts, as well as those of other learners. We tested this hypothesis in a longitudinal functional MRI study that regularly scanned college students enrolled in an introduction to computer science course. We additionally scanned graduate student experts in computer science. We show that alignment among students successfully predicts overall performance in a final exam. Furthermore, within individual students, we find better learning outcomes for concepts that evoke better alignment with experts and with other students, revealing neural patterns associated with specific learned concepts in individuals.


2019 ◽  
Author(s):  
S. A. Herff ◽  
C. Herff ◽  
A. J. Milne ◽  
G. D. Johnson ◽  
J. J. Shih ◽  
...  

AbstractRhythmic auditory stimuli are known to elicit matching activity patterns in neural populations. Furthermore, recent research has established the particular importance of high-gamma brain activity in auditory processing by showing its involvement in auditory phrase segmentation and envelope-tracking. Here, we use electrocorticographic (ECoG) recordings from eight human listeners, to see whether periodicities in high-gamma activity track the periodicities in the envelope of musical rhythms during rhythm perception and imagination. Rhythm imagination was elicited by instructing participants to imagine the rhythm to continue during pauses of several repetitions. To identify electrodes whose periodicities in high-gamma activity track the periodicities in the musical rhythms, we compute the correlation between the autocorrelations (ACC) of both the musical rhythms and the neural signals. A condition in which participants listened to white noise was used to establish a baseline. High-gamma autocorrelations in auditory areas in the superior temporal gyrus and in frontal areas on both hemispheres significantly matched the autocorrelation of the musical rhythms. Overall, numerous significant electrodes are observed on the right hemisphere. Of particular interest is a large cluster of electrodes in the right prefrontal cortex that is active during both rhythm perception and imagination. This indicates conscious processing of the rhythms’ structure as opposed to mere auditory phenomena. The ACC approach clearly highlights that high-gamma activity measured from cortical electrodes tracks both attended and imagined rhythms.


2000 ◽  
Vol 12 (4) ◽  
pp. 569-582 ◽  
Author(s):  
Michel-Ange Amorim ◽  
Wilfried Lang ◽  
Gerald Lindinger ◽  
Dagmar Mayer ◽  
Lüder Deecke ◽  
...  

Under appropriate conditions, an observer's memory for the final position of an abruptly halted moving object is distorted in the direction of the represented motion. This phenomenon is called “representational momentum” (RM). We examined the effect of mental imagery instructions on the modulation of spatial orientation processing by testing for RM under conditions of picture versus body rotation perception and imagination. Behavioral data were gathered via classical reaction time and error measurements, whereas brain activity was recorded with the help of magnetoence-phalography (MEG). Due to the so-called inverse problem and to signal complexity, results were described at the signal level rather than with the source location modeling. Brain magnetic field strength and spatial distribution, as well as latency of P200m evoked fields were used as neurocognitive markers. A task was devised where a subject examined a rotating sea horizon as seen from a virtual boat in order to extrapolate either the picture motion or the body motion relative to the picture while the latter disappeared temporarily until a test-view was displayed as a final orientation candidate. Results suggest that perceptual interpretation and extrapolation of visual motion in the roll plane capitalize on the fronto-parietal cortical networks involving working memory processes. Extrapolation of the rotational dynamics of sea horizon revealed a RM effect simulating the role of gravity in rotational equilibrium. Modulation of the P200m component reflected spatial orientation processing and a non-voluntary detection of an incongruity between displayed and expected final orientations given the implied motion. Neuromagnetic properties of anticipatory (Contingent Magnetic Variation) and evoked (P200m) brain magnetic fields suggest, respectively, differential allocation of attentional resources by mental imagery instructions (picture vs. body tilt), and a communality of neural structures (in the right centro-parietal region) for the control of both RM and mental rotation processes. Finally, the RM of the body motion is less prone to forward shifts than that of picture motion evidencing an internalization of the implied mass of the virtual body of the observer.


2005 ◽  
Vol 93 (3) ◽  
pp. 1498-1509 ◽  
Author(s):  
Christina Schmitz ◽  
Per Jenmalm ◽  
H. Henrik Ehrsson ◽  
Hans Forssberg

When humans repetitively lift the same object, the fingertip forces are targeted to the weight of the object. The anticipatory programming of the forces depends on sensorimotor memory representations that provide information on the object weight. In the present study, we investigate the neural substrates of these sensorimotor memory systems by recording the neural activity during predictable or unpredictable changes in the weight of an object in a lifting task. An unpredictable change in weight leads to erroneous programming of the fingertip forces. This triggers corrective mechanisms and an update of the sensorimotor memories. In the present fMRI study, healthy right-handed subjects repetitively lifted an object between right index finger and thumb. In the constant condition, which served as a control, the weight of the object remained constant (either 230 or 830 g). The weight alternated between 230 and 830 g during the regular condition and was irregularly changed between the two weights during the irregular condition. When we contrasted regular minus constant and irregular minus constant, we found activations in the right inferior frontal gyrus pars opercularis (area 44), the left parietal operculum and the right supramarginal gyrus. Furthermore, irregular was associated with stronger activation in the right inferior frontal cortex as compared with regular. Taken together, these results suggest that the updating of sensorimotor memory representations and the corrective reactions that occur when we manipulate different objects correspond to changes in synaptic activity in these fronto-parietal circuits.


2011 ◽  
Vol 23 (11) ◽  
pp. 3620-3636 ◽  
Author(s):  
David B. Miele ◽  
Tor D. Wager ◽  
Jason P. Mitchell ◽  
Janet Metcalfe

Judgments of agency refer to people's self-reflective assessments concerning their own control: their assessments of the extent to which they themselves are responsible for an action. These self-reflective metacognitive judgments can be distinguished from action monitoring, which involves the detection of the divergence (or lack of divergence) between observed states and expected states. Presumably, people form judgments of agency by metacognitively reflecting on the output of their action monitoring and then consciously inferring the extent to which they caused the action in question. Although a number of previous imaging studies have been directed at action monitoring, none have assessed judgments of agency as a potentially separate process. The present fMRI study used an agency paradigm that not only allowed us to examine the brain activity associated with action monitoring but that also enabled us to investigate those regions associated with metacognition of agency. Regarding action monitoring, we found that being “out of control” during the task (i.e., detection of a discrepancy between observed and expected states) was associated with increased brain activity in the right TPJ, whereas being “in control” was associated with increased activity in the pre-SMA, rostral cingulate zone, and dorsal striatum (regions linked to self-initiated action). In contrast, when participants made self-reflective metacognitive judgments about the extent of their own control (i.e., judgments of agency) compared with when they made judgments that were not about control (i.e., judgments of performance), increased activity was observed in the anterior PFC, a region associated with self-reflective processing. These results indicate that action monitoring is dissociable from people's conscious self-attributions of control.


2020 ◽  
Vol 117 (23) ◽  
pp. 13162-13167 ◽  
Author(s):  
Arvid Guterstam ◽  
Andrew I. Wilterson ◽  
Davis Wachtell ◽  
Michael S. A. Graziano

Keeping track of other people’s gaze is an essential task in social cognition and key for successfully reading other people’s intentions and beliefs (theory of mind). Recent behavioral evidence suggests that we construct an implicit model of other people’s gaze, which may incorporate physically incoherent attributes such as a construct of force-carrying beams that emanate from the eyes. Here, we used functional magnetic resonance imaging and multivoxel pattern analysis to test the prediction that the brain encodes gaze as implied motion streaming from an agent toward a gazed-upon object. We found that a classifier, trained to discriminate the direction of visual motion, significantly decoded the gaze direction in static images depicting a sighted face, but not a blindfolded one, from brain activity patterns in the human motion-sensitive middle temporal complex (MT+) and temporo-parietal junction (TPJ). Our results demonstrate a link between the visual motion system and social brain mechanisms, in which the TPJ, a key node in theory of mind, works in concert with MT+ to encode gaze as implied motion. This model may be a fundamental aspect of social cognition that allows us to efficiently connect agents with the objects of their attention. It is as if the brain draws a quick visual sketch with moving arrows to help keep track of who is attending to what. This implicit, fluid-flow model of other people’s gaze may help explain culturally universal myths about the mind as an energy-like, flowing essence.


2019 ◽  
Author(s):  
Lau M. Andersen ◽  
Christoph Pfeiffer ◽  
Silvia Ruffieux ◽  
Bushra Riaz ◽  
Dag Winkler ◽  
...  

AbstractMagnetoencephalography (MEG) has a unique capacity to resolve the spatio-temporal development of brain activity from non-invasive measurements. Conventional MEG, however, relies on sensors that sample from a distance (20-40 mm) to the head due to thermal insulation requirements (the MEG sensors function at 4 K in a helmet). A gain in signal strength and spatial resolution may be achieved if sensors are moved closer to the head. Here, we report a study comparing measurements from a seven-channel on-scalp SQUID MEG system to those from a conventional (in-helmet) SQUID MEG system.We compared spatio-temporal resolution between on-scalp and conventional MEG by comparing the discrimination accuracy for neural activity patterns resulting from stimulating five different phalanges of the right hand. Because of proximity and sensor density differences between on-scalp and conventional MEG, we hypothesized that on-scalp MEG would allow for a more high-resolved assessment of these activity patterns, and therefore also a better classification performance in discriminating between neural activations from the different phalanges.We observed that on-scalp MEG provided better classification performance during an early post-stimulus period (15-30 ms). This corresponded to electroencephalographic (EEG) response components N16 and P23, and was an unexpected observation as these components are usually not observed in conventional MEG. They indicate that on-scalp MEG opens up for a richer registration of the cortical signal, allowing for sensitivity to what are potentially sources in the thalamo-cortical radiation and to quasi-radial sources.We had originally expected that on-scalp MEG would provide better classification accuracy based on activity in proximity to the P60m component compared to conventional MEG. This component indeed allowed for the best classification performance for both MEG systems (60-75%, chance 50%). However, we did not find that on-scalp MEG allowed for better classification than conventional MEG at this latency. We believe this may be due to the limited sensor coverage in the recording, in combination with our strategy for positioning the on-scalp MEG sensors. We discuss how sensor density and coverage as well as between-phalange source field dissimilarities may influence our hypothesis testing, which we believe to be useful for future benchmarking measurements.


2019 ◽  
Author(s):  
Robert Chavez ◽  
Dylan D. Wagner

Humans continually form and update impressions of each other’s identities based on the disclosure of thoughts, feelings, and beliefs. At the same time, individuals also have specific beliefs and knowledge about their own self-concept. Over a decade of social neuroscience research has shown that retrieving information about the self and about other persons recruits similar areas of the medial prefrontal cortex (MPFC), however it remains unclear if an individual’s neural representation of self is reflected in the brains of well-known others or if instead the two representations share no common relationship. Here we examined this question in a tight-knit network of friends as they engaged in a round-robin trait evaluation task in which each participant was both perceiver and target for every other participant and in addition also evaluated their self. Using functional magnetic resonance imaging and a multilevel modeling approach, we show that multivoxel brain activity patterns in the MPFC during a person’s self-referential thought are correlated with those of friends when thinking of that same person. Moreover, the similarity of neural self/other patterns was itself positively associated with the similarity of self/other trait judgments ratings as measured behaviorally in a separate session. These findings suggest that accuracy in person perception may be predicated on the degree to which the brain activity pattern associated with an individual thinking about their own self-concept is similarly reflected in the brains of others.


Sign in / Sign up

Export Citation Format

Share Document