scholarly journals A Multidimensional Examination of Psychopathy Traits and Gray Matter Volume in Adults

Author(s):  
Rickie Miglin ◽  
Samantha Rodriguez ◽  
Nadia Bounoua ◽  
Naomi Sadeh

Abstract Uncovering the neurobiological abnormalities that may contribute to the manifestation of psychopathic traits is an important step towards understanding the etiology of this disorder. Although many studies have examined gray matter volume (GMV) in relation to psychopathy, few have examined how dimensions of psychopathic traits interactively relate to GMV, an approach that holds promise for parsing heterogeneity in neurobiological risk factors for this disorder. The aim of this study was to investigate the affective-interpersonal (Factor 1) and impulsive-antisocial (Factor 2) dimensions of psychopathy in relation to cortical surface and subcortical GMV in a mixed-gender, high-risk community sample with significant justice-system involvement (N = 156, 50.0% men). Cortex-wide analysis indicated that (i) the Factor 1 traits correlated negatively with GMV in two cortical clusters, one in the right rostral middle frontal region and one in the occipital lobe, and (ii) the interaction of the affective-interpersonal and impulsive-antisocial traits was negatively associated with GMV bilaterally in the parietal lobe, such that individuals high on both trait dimensions evidenced reduced GMV relative to individuals high on only one psychopathy factor. An interactive effect also emerged for bilateral amygdalar and hippocampal GMV, such that Factor 1 psychopathic traits were significantly negatively associated with GMV only at high (but not low) levels of Factor 2 traits. Results extend prior research by demonstrating the neurobiological correlates of psychopathy differ based on the presentation of Factor 1 and 2 traits.

2014 ◽  
Vol 26 (5) ◽  
pp. 986-999 ◽  
Author(s):  
Marinella Cappelletti ◽  
Rebecca Chamberlain ◽  
Elliot D. Freeman ◽  
Ryota Kanai ◽  
Brian Butterworth ◽  
...  

How do our abilities to process number and other continuous quantities such as time and space relate to each other? Recent evidence suggests that these abilities share common magnitude processing and neural resources, although other findings also highlight the role of dimension-specific processes. To further characterize the relation between number, time, and space, we first examined them in a population with a developmental numerical dysfunction (developmental dyscalculia) and then assessed the extent to which these abilities correlated both behaviorally and anatomically in numerically normal participants. We found that (1) participants with dyscalculia showed preserved continuous quantity processing and (2) in numerically normal adults, numerical and continuous quantity abilities were at least partially dissociated both behaviorally and anatomically. Specifically, gray matter volume correlated with both measures of numerical and continuous quantity processing in the right TPJ; in contrast, individual differences in number proficiency were associated with gray matter volume in number-specific cortical regions in the right parietal lobe. Together, our new converging evidence of selective numerical impairment and of number-specific brain areas at least partially distinct from common magnitude areas suggests that the human brain is equipped with different ways of quantifying the outside world.


2019 ◽  
pp. 135910531986997 ◽  
Author(s):  
Huazhan Yin ◽  
Li Zhang ◽  
Dan Li ◽  
Lu Xiao ◽  
Mei Cheng

This study investigated the neuroanatomical basis of the association between depression/anxiety and sleep quality among 370 college students. The results showed that there was a significant correlation between sleep quality and depression/anxiety. Moreover, mediation results showed that the gray matter volume of the right insula mediated the relationship between depression/anxiety and sleep quality, which suggested that depression/anxiety may affect sleep quality through the right insula volume. These findings confirmed a strong link between sleep quality and depression/anxiety, while highlighting the volumetric variation in the right insula associated with emotional processing, which may play a critical role in improving sleep quality.


2020 ◽  
Author(s):  
Joshua M. Carlson ◽  
Lin Fang

AbstractIn a sample of highly anxious individuals, the relationship between gray matter volume brain morphology and attentional bias to threat was assessed. Participants performed a dot-probe task of attentional bias to threat and gray matter volume was acquired from whole brain structural T1-weighted MRI scans. The results replicate previous findings in unselected samples that elevated attentional bias to threat is linked to greater gray matter volume in the anterior cingulate cortex, middle frontal gyrus, and striatum. In addition, we provide novel evidence that elevated attentional bias to threat is associated with greater gray matter volume in the right posterior parietal cortex, cerebellum, and other distributed regions. Lastly, exploratory analyses provide initial evidence that distinct sub-regions of the right posterior parietal cortex may contribute to attentional bias in a sex-specific manner. Our results illuminate how differences in gray matter volume morphology relate to attentional bias to threat in anxious individuals. This knowledge could inform neurocognitive models of anxiety-related attentional bias to threat and targets of neuroplasticity in anxiety interventions such as attention bias modification.


SLEEP ◽  
2019 ◽  
Vol 42 (12) ◽  
Author(s):  
Ambra Stefani ◽  
Thomas Mitterling ◽  
Anna Heidbreder ◽  
Ruth Steiger ◽  
Christian Kremser ◽  
...  

Abstract Study Objectives Integrated information on brain microstructural integrity and iron storage and its impact on the morphometric profile is not available in restless legs syndrome (RLS). We applied multimodal magnetic resonance imaging (MRI) including diffusion tensor imaging, the transverse relaxation rate (R2*), a marker for iron storage, as well as gray and white matter volume measures to characterize RLS-related MRI signal distribution patterns and to analyze their associations with clinical parameters. Methods Eighty-seven patients with RLS (mean age 51, range 20–72 years; disease duration, mean 13 years, range 1–46 years, of those untreated n = 30) and 87 healthy control subjects, individually matched for age and gender, were investigated with multimodal 3T MRI. Results Volume of the white matter compartment adjacent to the post- and precentral cortex and fractional anisotropy (FA) of the frontopontine tract were both significantly reduced in RLS compared to healthy controls, and these alterations were associated with disease duration (r = 0.25, p = 0.025 and r = 0.23, p = 0.037, respectively). Corresponding gray matter volume increases of the right primary motor cortex in RLS (p < 0.001) were negatively correlated with the right FA signal of the frontopontine tract (r = −0.22; p < 0.05). Iron content evaluated with R2* was reduced in the putamen as well as in temporal and occipital compartments of the RLS cohort compared to the control group (p < 0.01). Conclusions Multimodal MRI identified progressing white matter decline of key somatosensory circuits that may underlie the perception of sensory leg discomfort. Increases of gray matter volume of the premotor cortex are likely to be a consequence of functional neuronal reorganization.


2012 ◽  
Vol 8 (1) ◽  
pp. 34-39 ◽  
Author(s):  
Mei-Kei Leung ◽  
Chetwyn C. H. Chan ◽  
Jing Yin ◽  
Chack-Fan Lee ◽  
Kwok-Fai So ◽  
...  

SLEEP ◽  
2020 ◽  
Vol 43 (9) ◽  
Author(s):  
Nicola Neumann ◽  
Martin Lotze ◽  
Martin Domin

Abstract Study Objectives Previous studies were inconsistent with regard to the association of sleep dysfunction on the brain’s gray matter volume (GMV). The current study set out to investigate if there is a moderating effect of sex on the relationship between sleep quality in healthy individuals and GMV. Methods We applied voxel-based morphometry in 1,074 young adults of the “Human Connectome Project.” An analysis of variance with the factors “sleep quality” (good/poor according to the Pittsburgh Sleep Quality Index, cutoff >5) and “sex” (male, female) on GMV was conducted. Additionally, linear relationships between sleep quality and GMV were tested. Results The analysis of variance yielded no main effect for sleep quality, but an interaction between sex and sleep quality for the right superior frontal gyrus. Post hoc t-tests showed that female good sleepers in comparison to female poor sleepers had larger GMV in the right parahippocampal gyrus extending to the right hippocampus (whole-brain family-wise error [FWE]-corrected), as well as smaller GMV in the right inferior parietal lobule (whole-brain FWE-corrected) and the right inferior temporal gyrus (whole brain FWE-corrected). There were no significant effects when comparing male good sleepers to male poor sleepers. Linear regression analyses corroborated smaller GMV in the right parahippocampal gyrus in women with poor sleep quality. Conclusions Poor sleep quality was associated with altered GMV in females, but not in males. Future studies are needed to investigate the neurobiological mechanisms that underlie the sex differences in the association of sleep quality and brain differences found in this study.


2012 ◽  
Vol 204 (2-3) ◽  
pp. 91-100 ◽  
Author(s):  
Lora M. Cope ◽  
Matthew S. Shane ◽  
Judith M. Segall ◽  
Prashanth K. Nyalakanti ◽  
Michael C. Stevens ◽  
...  

2020 ◽  
Author(s):  
Paul Faulkner ◽  
Susanna Lucini Paioni ◽  
Petya Kozhuharova ◽  
Natasza Orlov ◽  
David J. Lythgoe ◽  
...  

AbstractCigarette smoking is still the largest contributor to disease and death worldwide. Successful cessation is hindered by decreases in prefrontal glutamate concentrations and gray matter volume due to daily smoking. Because non-daily, intermittent smoking also contributes greatly to disease and death, understanding whether infrequent tobacco use is associated with reductions in prefrontal glutamate concentrations and gray matter volume may aid public health. Eighty-five young participants (41 non-smokers, 24 intermittent smokers, 20 daily smokers, mean age ~23 years old), underwent 1H-magnetic resonance spectroscopy of the medial prefrontal cortex, as well as structural MRI to determine whole-brain gray matter volume. Compared to non-smokers, both daily and intermittent smokers exhibited lower concentrations of glutamate, creatine, N-acetylaspartate and myo-inositol in the medial prefrontal cortex, and lower gray matter volume in the right inferior frontal gyrus; these measures of prefrontal metabolites and structure did not differ between daily and intermittent smokers. Finally, medial prefrontal metabolite concentrations and right inferior frontal gray matter volume were positively correlated, but these relationships were not influenced by smoking status. This study provides the first evidence that both daily and intermittent smoking are associated with low concentrations of glutamate, creatine, N-acetylaspartate and myo-inositol, and low gray matter volume in the prefrontal cortex. Future tobacco cessation efforts should not ignore potential deleterious effects of intermittent smoking by considering only daily smokers. Finally, because low glutamate concentrations hinder cessation, treatments that can normalize tonic levels of prefrontal glutamate, such as N-acetylcysteine, may help intermittent and daily smokers to quit.


Sign in / Sign up

Export Citation Format

Share Document