scholarly journals Multimodal Magnetic Resonance Imaging reveals alterations of sensorimotor circuits in restless legs syndrome

SLEEP ◽  
2019 ◽  
Vol 42 (12) ◽  
Author(s):  
Ambra Stefani ◽  
Thomas Mitterling ◽  
Anna Heidbreder ◽  
Ruth Steiger ◽  
Christian Kremser ◽  
...  

Abstract Study Objectives Integrated information on brain microstructural integrity and iron storage and its impact on the morphometric profile is not available in restless legs syndrome (RLS). We applied multimodal magnetic resonance imaging (MRI) including diffusion tensor imaging, the transverse relaxation rate (R2*), a marker for iron storage, as well as gray and white matter volume measures to characterize RLS-related MRI signal distribution patterns and to analyze their associations with clinical parameters. Methods Eighty-seven patients with RLS (mean age 51, range 20–72 years; disease duration, mean 13 years, range 1–46 years, of those untreated n = 30) and 87 healthy control subjects, individually matched for age and gender, were investigated with multimodal 3T MRI. Results Volume of the white matter compartment adjacent to the post- and precentral cortex and fractional anisotropy (FA) of the frontopontine tract were both significantly reduced in RLS compared to healthy controls, and these alterations were associated with disease duration (r = 0.25, p = 0.025 and r = 0.23, p = 0.037, respectively). Corresponding gray matter volume increases of the right primary motor cortex in RLS (p < 0.001) were negatively correlated with the right FA signal of the frontopontine tract (r = −0.22; p < 0.05). Iron content evaluated with R2* was reduced in the putamen as well as in temporal and occipital compartments of the RLS cohort compared to the control group (p < 0.01). Conclusions Multimodal MRI identified progressing white matter decline of key somatosensory circuits that may underlie the perception of sensory leg discomfort. Increases of gray matter volume of the premotor cortex are likely to be a consequence of functional neuronal reorganization.

2019 ◽  
Vol 61 (4) ◽  
pp. 487-495
Author(s):  
Hyeong Cheol Moon ◽  
Byeong Ho Oh ◽  
Chaejoon Cheong ◽  
Won Seop Kim ◽  
Kyung Soo Min ◽  
...  

Background Chronic repeated transient ischemic changes are one of the common symptoms of moyamoya disease that could affect cortical and subcortical atrophy. Purpose We aimed to assess the cortical gray matter volume and thickness, white matter subcortical volume, and clinical characteristics using 7-T magnetic resonance imaging (MRI) and MR angiography (MRA). Material and Methods In this case-control study, whole-brain parcellation of gray matter and subcortical volumes were manually assessed in nine patients with moyamoya disease (18 hemispheres; median age = 34 years; age range = 10–60 years) and nine healthy controls (18 hemispheres; median age = 29 years; age range = 20–62 years) matched for age and sex, who underwent both 7-T MRI and MRA. The volumes were measured using high-resolution image (<1 mm) processing based on the Desikan-Killiany-Tourville (DKT) atlas, via an automated segmentation method (FreeSurfer version 6.0). Results The gray matter volume of the left precentral cortex and the white matter volume of the subcortical cerebellum were lower in both hemispheres in the patients with moyamoya disease compared to the healthy controls. Conclusion Gray matter atrophy in the precentral cortex and cerebellar white matter were detected in this 7-T MRI volumetric analysis study of patients with moyamoya disease who experienced repeated transient ischemic changes. Cortical atrophy in precentral cortex and cerebellum could explain the transient motor weakness in patients with moyamoya disease, as one of the early findings was that patients with moyamoya disease do not have detectable infarction changes on conventional MRI images.


Author(s):  
Corey W. Bown ◽  
Omair A. Khan ◽  
Elizabeth E. Moore ◽  
Dandan Liu ◽  
Kimberly R. Pechman ◽  
...  

Objective: To determine whether baseline aortic stiffness, measured by aortic pulse wave velocity (PWV), relates to longitudinal cerebral gray or white matter changes among older adults. Baseline cardiac magnetic resonance imaging will be used to assess aortic PWV while brain magnetic resonance imaging will be used to assess gray matter and white matter hyperintensity (WMH) volumes at baseline, 18 months, 3 years, 5 years, and 7 years. Approach and Results: Aortic PWV (m/s) was quantified from cardiac magnetic resonance. Multimodal 3T brain magnetic resonance imaging included T 1 -weighted imaging for quantifying gray matter volumes and T 2 -weighted fluid-attenuated inversion recovery imaging for quantifying WMHs. Mixed-effects regression models related baseline aortic PWV to longitudinal gray matter volumes (total, frontal, parietal, temporal, occipital, hippocampal, and inferior lateral ventricle) and WMH volumes (total, frontal, parietal, temporal, and occipital) adjusting for age, sex, race/ethnicity, education, cognitive diagnosis, Framingham stroke risk profile, APOE (apolipoprotein E)-ε4 carrier status, and intracranial volume. Two hundred seventy-eight participants (73±7 years, 58% male, 87% self-identified as non-Hispanic White, 159 with normal cognition, and 119 with mild cognitive impairment) from the Vanderbilt Memory & Aging Project (n=335) were followed on average for 4.9±1.6 years with PWV measurements occurring from September 2012 to November 2014 and longitudinal brain magnetic resonance imaging measurements occurring from September 2012 to June 2021. Higher baseline aortic PWV was related to greater decrease in hippocampal (β=−3.6 [mm 3 /y]/[m/s]; [95% CI, −7.2 to −0.02] P =0.049) and occipital lobe (β=−34.2 [mm 3 /y]/[m/s]; [95% CI, −67.8 to −0.55] P =0.046) gray matter volume over time. Higher baseline aortic PWV was related to greater increase in WMH volume over time in the temporal lobe (β=17.0 [mm 3 /y]/[m/s]; [95% CI, 7.2–26.9] P <0.001). All associations may be driven by outliers. Conclusions: In older adults, higher baseline aortic PWV related to greater decrease in gray matter volume and greater increase in WMHs over time. Because of unmet cerebral metabolic demands and microvascular remodeling, arterial stiffening may preferentially affect certain highly active brain regions like the temporal lobes. These same regions are affected early in the course of Alzheimer disease.


Author(s):  
Ehab Ali Abdelgawad ◽  
Samir M. Mounir ◽  
Marah M. Abdelhay ◽  
Mohammed A. Ameen

Abstract Background Epilepsy is a chronic condition characterized by repeated spontaneous seizures. It affects up to 1% of the population worldwide. Children with magnetic resonance imaging (MRI) negative (or “nonlesional”) focal epilepsy constitute the most challenging pharmacoresistant group undergoing pre-neurosurgical evaluation. Volumetric magnetic resonance imaging (VMRI) is a non-invasive brain imaging technique done to measure the volume and structure of specific regions of the brain. It is useful for many things, but primarily for discovering atrophy (wasting away of body tissue) and measuring its progression. The aim of this study is to assess role of volumetric magnetic resonance imaging in evaluation of nonlesional childhood epilepsy in which no specific findings detected in conventional MRI. Results There were 20 children with normal MRI brain volumetry (33.3%) and 40 children (66.6%) with abnormal MRI brain volumetry. Grey matter volume in the abnormal group was significantly higher (P value was 0.001*) than the normal group (mean ± S.D 934.04 ± 118.12 versus 788.57 ± 57.71 respectively). White matter volume in the abnormal group was significantly smaller (P value was < 0.0001*) than in the normal group (mean ± S.D 217.79 ± 65.22 versus 418.07 ± 103.76 respectively). Right hippocampus CA4-DG volume in the abnormal volume group was found to be significantly smaller (P value < 0.0001*) than that of the normal group volume (mean ± S.D 0.095 ± 0.04 versus 0.32 ± 0.36 respectively). Right hippocampus subiculum volume in the abnormal volume group were found to be significantly smaller (P value was < 0.0001*) than that of the normal group volume (mean ± S.D 0.42 ± 0.11 versus 0.84 ± 0.09 respectively). Thalamus volume in the abnormal group was significantly smaller (P value 0.048*) than in the normal group (mean ± S.D 10.235 ± 3.22 versus 11.82 ± 0.75 respectively). Right thalamus was significantly smaller (P value was 0.028*) than in the normal group (mean ± S.D 5.01 ± 1.62 versus 5.91 ± 0.39 respectively). The sensitivity of the right hippocampus subiculum volume and right hippocampus CA4-DG was 100%. The sensitivity of white matter volume and grey matter volume and thalamus was 85% and 75% and 55% respectively. The specificity of the right hippocampus subiculum volume and right hippocampus CA4-DG was 90% and 90% respectively. The specificity of the right hippocampus subiculum volume and right hippocampus CA4-DG and grey matter volume and white matter volume and total hippocampus and thalamus was 100%. The specificity of brain volume was 60%. The accuracy of the right hippocampus subiculum volume and right hippocampus CA4-DG was 100%. The specificity of white matter volume, grey matter volume, thalamus, total hippocampus, and brain volume was 97%, 87%, 65%, 61%, and 57% respectively. Conclusion Volumetric magnetic resonance imaging is a promising imaging technique that can provide assistance in evaluation of nonlesional pharmacoresistant childhood epilepsy.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Evan T. Schulze ◽  
Elizabeth K. Geary ◽  
Teresa M. Susmaras ◽  
James T. Paliga ◽  
Pauline M. Maki ◽  
...  

Aging studies consistently show a relationship between decreased gray matter volume and decreased performance on working memory tasks. Few aging studies have investigated white matter changes in relation to functional brain changes during working memory tasks. Twenty-five younger and 25 older adults underwent anatomical magnetic resonance imaging (MRI) scans to measure gray matter volume, diffusion tensor imaging (DTI) to measure fractional anisotropy (FA) as a measure of white matter integrity, and functional magnetic resonance imaging (fMRI) while performing a working memory task. Significant increases in activation (fMRI) were seen in the left dorsal and ventral lateral prefrontal cortex with increased working memory load and with increased age (older showing greater bilateral activation). Partial correlational analyses revealed that even after controlling for age, frontal FA correlated significantly with fMRI activation during performance on the working memory task. These findings highlight the importance of white matter integrity in working memory performance associated with normal aging.


Neuroreport ◽  
2006 ◽  
Vol 17 (10) ◽  
pp. 951-956 ◽  
Author(s):  
Gene E. Alexander ◽  
Kewei Chen ◽  
Tricia L. Merkley ◽  
Eric M. Reiman ◽  
Richard J. Caselli ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document