scholarly journals O11.5. INCREASED INFLAMMATION AND MACROPHAGE INFILTRATION IS ASSOCIATED WITH ALTERED SUBEPENDYMAL ZONE NEUROGENESIS IN SCHIZOPHRENIA BUT NOT BIPOLAR DISORDER

2020 ◽  
Vol 46 (Supplement_1) ◽  
pp. S28-S29
Author(s):  
Hayley North ◽  
Christin Weissleder ◽  
Maina Bitar ◽  
Janice M Fullerton ◽  
Rachel Sager ◽  
...  

Abstract Background Inflammation is implicated in the pathogenesis of schizophrenia and bipolar disorder. Inflammation regulates neurogenesis, and markers for stem cells and neuronal progenitors are reduced in schizophrenia and bipolar disorder in the subependymal zone (SEZ) – the brain’s largest region of neurogenesis. This research aimed to discover core differences in gene expression and cellular composition in the SEZ in psychiatric disorders that may contribute to dysregulated neurogenesis. Methods We performed total RNA sequencing in the SEZ of 20 post-mortem schizophrenia and 21 control brains. Quantitative PCR (qPCR) and immunohistochemistry were performed in 32 schizophrenia and 32 control overlapping cases and 29 bipolar disorder cases. Immunohistochemistry was used for quantification and localisation of CD163+ macrophages. Cluster-analysis of IL6, IL6R, IL1R1 and SERPINA3 expression defined low and high inflammation subgroups, which were used to compare neurogenesis marker expression. Results Out of >60,000 genes, the most significantly differentially expressed gene in schizophrenia was CD163, a macrophage marker, which was increased 3.3 times compared to controls and confirmed by qPCR. Abundant CD163+ macrophages were located surrounding blood vessels, in the parenchyma and seem to infiltrate throughout the SEZ where neural stem and progenitor cells typically reside. Macrophage cell density was increased in schizophrenia compared to controls and bipolar disorder (by 29% and 61%; p = 0.017 and p = 0.002 respectively). CD163 expression positively correlated with the quiescent neural stem cell marker GFAPδ (r = 0.56, p = 0.001), and negatively correlated with neuronal progenitor marker ASCL1 (r = - 0.40, p = 0.032) in schizophrenia but not bipolar disorder. Cluster analysis of inflammatory gene expression revealed 40% of schizophrenia but only 10% of control cases were highly inflamed. The high inflammation schizophrenia subgroup had increased CD163 and GFAPδ expression but decreased ASCL1 expression (all p < 0.026). Discussion Increased macrophages in the SEZ is a key difference in schizophrenia pathology and potentially drives heightened inflammation in a subgroup. Inflammation has varied effects on different stages of neurogenesis in schizophrenia but not bipolar disorder, implicating divergent mechanisms leading to reduced neurogenesis in each psychiatric condition. In schizophrenia, macrophages and high inflammation seem to reduce neuronal differentiation and sustain neural stem cell quiescence, likely blunting stem cell proliferation. Therefore, reduced SEZ neurogenesis across the lifespan in schizophrenia may contribute to the widely reported inhibitory interneuron deficits.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hayley F. North ◽  
Christin Weissleder ◽  
Janice M. Fullerton ◽  
Rachel Sager ◽  
Maree J. Webster ◽  
...  

AbstractInflammation regulates neurogenesis, and the brains of patients with schizophrenia and bipolar disorder have reduced expression of neurogenesis markers in the subependymal zone (SEZ), the birthplace of inhibitory interneurons. Inflammation is associated with cortical interneuron deficits, but the relationship between inflammation and reduced neurogenesis in schizophrenia and bipolar disorder remains unexplored. Therefore, we investigated inflammation in the SEZ by defining those with low and high levels of inflammation using cluster analysis of IL6, IL6R, IL1R1 and SERPINA3 gene expression in 32 controls, 32 schizophrenia and 29 bipolar disorder cases. We then determined whether mRNAs for markers of glia, immune cells and neurogenesis varied with inflammation. A significantly greater proportion of schizophrenia (37%) and bipolar disorder cases (32%) were in high inflammation subgroups compared to controls (10%, p < 0.05). Across the high inflammation subgroups of psychiatric disorders, mRNAs of markers for phagocytic microglia were reduced (P2RY12, P2RY13), while mRNAs of markers for perivascular macrophages (CD163), pro-inflammatory macrophages (CD64), monocytes (CD14), natural killer cells (FCGR3A) and adhesion molecules (ICAM1) were increased. Specific to high inflammation schizophrenia, quiescent stem cell marker mRNA (GFAPD) was reduced, whereas neuronal progenitor (ASCL1) and immature neuron marker mRNAs (DCX) were decreased compared to low inflammation control and schizophrenia subgroups. Thus, a heightened state of inflammation may dampen microglial response and recruit peripheral immune cells in psychiatric disorders. The findings elucidate differential neurogenic responses to inflammation within psychiatric disorders and highlight that inflammation may impair neuronal differentiation in the SEZ in schizophrenia.


Author(s):  
Christin Weissleder ◽  
Maree J Webster ◽  
Guy Barry ◽  
Cynthia Shannon Weickert

Abstract The generation of inhibitory interneurons from neural stem cells in the subependymal zone is regulated by trophic factors. Reduced levels of trophic factors are associated with inhibitory interneuron dysfunction in the prefrontal cortex and hippocampus in psychiatric disorders, yet the extent to which altered trophic support may underpin deficits in inhibitory interneuron generation in the neurogenic niche remains unexplored in schizophrenia and bipolar disorder. We determined whether the expression of ligands, bioavailability-regulating binding proteins, and cognate receptors of 4 major trophic factor families (insulin-like growth factor [IGF], epidermal growth factor [EGF], fibroblast growth factor [FGF], and brain-derived neurotrophic factor [BDNF]) are changed in schizophrenia and bipolar disorder compared to controls. We used robust linear regression analyses to determine whether altered expression of trophic factor family members predicts neurogenesis marker expression across diagnostic groups. We found that IGF1 mRNA was decreased in schizophrenia and bipolar disorder compared with controls (P ≤ .006), whereas both IGF1 receptor (IGF1R) and IGF binding protein 2 (IGFBP2) mRNAs were reduced in schizophrenia compared with controls (P ≤ .02). EGF, FGF, and BDNF family member expression were all unchanged in both psychiatric disorders compared with controls. IGF1 expression positively predicted neuronal progenitor and immature neuron marker mRNAs (P ≤ .01). IGFBP2 expression positively predicted neural stem cell and neuronal progenitor marker mRNAs (P ≤ .001). These findings provide the first molecular evidence of decreased IGF1, IGF1R, and IGFBP2 mRNA expression in the subependymal zone in psychiatric disorders, which may potentially impact neurogenesis in schizophrenia and bipolar disorder.


2013 ◽  
Vol 12 (1) ◽  
pp. 88-100 ◽  
Author(s):  
M. Ángeles Marqués-Torrejón ◽  
Eva Porlan ◽  
Ana Banito ◽  
Esther Gómez-Ibarlucea ◽  
Andrés J. Lopez-Contreras ◽  
...  

2015 ◽  
Vol 18 (4) ◽  
pp. 490-492 ◽  
Author(s):  
Filippo Calzolari ◽  
Julia Michel ◽  
Emily Violette Baumgart ◽  
Fabian Theis ◽  
Magdalena Götz ◽  
...  

2015 ◽  
Vol 3 (4) ◽  
pp. 87-98
Author(s):  
Mohammad Reza Hashemzadeh ◽  
Zahra Seyedi ◽  
Mohammad Amin Edalatmanesh ◽  
Samaneh Rafiei ◽  
◽  
...  

2020 ◽  
Vol 96 (8) ◽  
pp. 351-363
Author(s):  
Ryoichiro KAGEYAMA ◽  
Shohei OCHI ◽  
Risa SUEDA ◽  
Hiromi SHIMOJO

Sign in / Sign up

Export Citation Format

Share Document