scholarly journals T145. EFFECTS OF CANNABIDIOL ON EMOTION PROCESSING IN PSYCHOSIS RISK: AN FMRI INVESTIGATION

2020 ◽  
Vol 46 (Supplement_1) ◽  
pp. S286-S286
Author(s):  
Cathy Davies ◽  
Robin Wilson ◽  
Elizabeth Appiah-Kusi ◽  
Michael Brammer ◽  
Jesus Perez ◽  
...  

Abstract Background There is currently a lack of effective pharmacological treatment for people at Clinical High Risk of Psychosis (CHR), who present with emotional dysregulation and high levels of anxiety. These individuals also show altered neural responses to emotional stimuli in key brain regions implicated in psychosis onset, including the striatum and medial temporal lobe. Cannabidiol (CBD), a non-intoxicating constituent of the cannabis plant, is thought to have antipsychotic and anxiolytic properties. The effects of CBD on brain function in CHR individuals during emotion processing has not been tested before. Methods In a randomised, double-blind, placebo-controlled, parallel-group design, 33 CHR individuals received a single oral 600mg dose of CBD or matched placebo, while 19 healthy controls did not receive any drug. Participants were studied using an emotion processing functional magnetic resonance imaging (fMRI) paradigm. Using a region-of-interest approach, we examined the differences in brain activation related to the CHR state and the effects of CBD, indexed using the blood oxygen level-dependent haemodynamic response fMRI signal. Results Compared to controls (n=19), CHR participants receiving placebo (n=15) showed significantly greater activation in the medial temporal lobe and less activation in the striatum during emotion processing. Within these same regions, activation in the CBD group (n=15) was (significantly) intermediate between that of the placebo and control groups. That is, CBD attenuated medial temporal and enhanced striatal activation in CHR participants. Discussion These findings suggest that CBD modulates the function of brain regions strongly implicated in psychosis onset and altered emotion processing. Further research is required to examine whether these neurofunctional effects translate into clinical efficacy after a period of treatment.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Cathy Davies ◽  
Robin Wilson ◽  
Elizabeth Appiah-Kusi ◽  
Grace Blest-Hopley ◽  
Michael Brammer ◽  
...  

Abstract Emotional dysregulation and anxiety are common in people at clinical high risk for psychosis (CHR) and are associated with altered neural responses to emotional stimuli in the striatum and medial temporal lobe. Using a randomised, double-blind, parallel-group design, 33 CHR patients were randomised to a single oral dose of CBD (600 mg) or placebo. Healthy controls (n = 19) were studied under identical conditions but did not receive any drug. Participants were scanned with functional magnetic resonance imaging (fMRI) during a fearful face-processing paradigm. Activation related to the CHR state and to the effects of CBD was examined using a region-of-interest approach. During fear processing, CHR participants receiving placebo (n = 15) showed greater activation than controls (n = 19) in the parahippocampal gyrus but less activation in the striatum. Within these regions, activation in the CHR group that received CBD (n = 15) was intermediate between that of the CHR placebo and control groups. These findings suggest that in CHR patients, CBD modulates brain function in regions implicated in psychosis risk and emotion processing. These findings are similar to those previously evident using a memory paradigm, suggesting that the effects of CBD on medial temporal and striatal function may be task independent.


2015 ◽  
Vol 114 (2) ◽  
pp. 1227-1238 ◽  
Author(s):  
Janice Chen ◽  
Paul A. Cook ◽  
Anthony D. Wagner

Emerging human, animal, and computational evidence suggest that, within the hippocampus, stored memories are compared with current sensory input to compute novelty, i.e., detecting when inputs deviate from expectations. Hippocampal subfield CA1 is thought to detect mismatches between past and present, and detected novelty is thought to modulate encoding processes, providing a mechanism for gating the entry of information into memory. Using high-resolution functional MRI, we examined human hippocampal subfield and medial temporal lobe cortical activation during prediction violations within a sequence of events unfolding over time. Subjects encountered sequences of four visual stimuli that were then reencountered in the same temporal order (Repeat) or a rearranged order (Violation). Prediction strength was manipulated by varying whether the sequence was initially presented once (Weak) or thrice (Strong) prior to the critical Repeat or Violation sequence. Analyses of blood oxygen level-dependent signals revealed that task-responsive voxels in anatomically defined CA1, CA23/dentate gyrus, and perirhinal cortex were more active when expectations were violated than when confirmed. Additionally, stronger prediction violations elicited greater activity than weaker violations in CA1, and CA1 contained the greatest proportion of voxels displaying this prediction violation pattern relative to other medial temporal lobe regions. Finally, a memory test with a separate group of subjects showed that subsequent recognition memory was superior for items that had appeared in prediction violation trials than in prediction confirmation trials. These findings indicate that CA1 responds to temporal order prediction violations, and that this response is modulated by prediction strength.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Carl J Hodgetts ◽  
Mark Postans ◽  
Jonathan P Shine ◽  
Derek K Jones ◽  
Andrew D Lawrence ◽  
...  

We tested a novel hypothesis, generated from representational accounts of medial temporal lobe (MTL) function, that the major white matter tracts converging on perirhinal cortex (PrC) and hippocampus (HC) would be differentially involved in face and scene perception, respectively. Diffusion tensor imaging was applied in healthy participants alongside an odd-one-out paradigm sensitive to PrC and HC lesions in animals and humans. Microstructure of inferior longitudinal fasciculus (ILF, connecting occipital and ventro-anterior temporal lobe, including PrC) and fornix (the main HC input/output pathway) correlated with accuracy on odd-one-out judgements involving faces and scenes, respectively. Similarly, blood oxygen level-dependent (BOLD) response in PrC and HC, elicited during oddity judgements, was correlated with face and scene oddity performance, respectively. We also observed associations between ILF and fornix microstructure and category-selective BOLD response in PrC and HC, respectively. These striking three-way associations highlight functionally dissociable, structurally instantiated MTL neurocognitive networks for complex face and scene perception.


2021 ◽  
Vol 12 ◽  
Author(s):  
Li Chen ◽  
Jiarui Song ◽  
Runtian Cheng ◽  
Kangcheng Wang ◽  
Xiaoshuang Liu ◽  
...  

Subcortical ischemic vascular disease (SIVD) is a major cause of vascular cognitive impairment (CI) and features extensive atrophy in the cerebral cortex. We aimed to test the hypothesis that cognitive deficits in SIVD are linked to decreased cortical thickness in specific brain regions, which may constitute neuroimaging biomarkers of CI. Sixty-seven SIVD patients without (SIVD-NC, n = 35) and with (SIVD-CI, n = 32) CI and a group of healthy controls (HCs, n = 36) underwent structural magnetic resonance imaging (MRI) and cognitive functional assessments. FreeSurfer was used to preprocess structural MRI data and to calculate and compare cortical thickness. The correlation between cortical thickness and cognitive scores was examined in SIVD patients. Significantly altered cortical thickness in the bilateral insula, middle and inferior temporal lobes, precuneus, and medial temporal lobe (MTL) was identified among the three groups (p < 0.05, Monte Carlo simulation corrected). Post hoc results showed significantly decreased thickness in the bilateral insula and temporal lobe in SIVD-NC and SIVD-CI patients compared with HCs. However, the areas with reduced cortical thickness were larger in SIVD-CI than SIVD-NC patients. SIVD-CI patients had significantly reduced thickness in the bilateral precuneus and left MTL (Bonferroni corrected) compared with SIVD-NC patients when we extracted the mean thickness for each region of interest. In SIVD patients, the thicknesses of the left MTL and bilateral precuneus were positively correlated with immediate recall in the memory test. SIVD might lead to extensive cerebral cortical atrophy, while atrophy in the MTL and precuneus might be associated with memory deficits.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Young-Bo Kim ◽  
Nambeom Kim ◽  
Jae Jun Lee ◽  
Seo-Eun Cho ◽  
Kyoung-Sae Na ◽  
...  

AbstractSubjective–objective discrepancy of sleep (SODS) might be related to the distorted perception of sleep deficit and hypersensitivity to insomnia-related stimuli. We investigated differences in brain activation to insomnia-related stimuli among insomnia patients with SODS (SODS group), insomnia patients without SODS (NOSODS group), and healthy controls (HC). Participants were evaluated for subjective and objective sleep using sleep diary and polysomnography. Functional magnetic resonance imaging was conducted during the presentation of insomnia-related (Ins), general anxiety-inducing (Gen), and neutral (Neu) stimuli. Brain reactivity to the contrast of Ins vs. Neu and Gen vs. Neu was compared among the SODS (n = 13), NOSODS (n = 15), and HC (n = 16) groups. In the SODS group compared to other groups, brain areas including the left fusiform, bilateral precuneus, right superior frontal gyrus, genu of corpus callosum, and bilateral anterior corona radiata showed significantly increased blood oxygen level dependent (BOLD) signal in the contrast of Ins vs. Neu. There was no brain region with significantly increased BOLD signal in the Gen vs. Neu contrast in the group comparisons. Increased brain activity to insomnia-related stimuli in several brain regions of the SODS group is likely due to these individuals being more sensitive to sleep-related threat and negative cognitive distortion toward insomnia.


2004 ◽  
Vol 16 (4) ◽  
pp. 637-653 ◽  
Author(s):  
John R. Anderson ◽  
Yulin Qin ◽  
V. Andrew Stenger ◽  
Cameron S. Carter

This research tests a model of the computational role of three cortical regions in tasks like algebra equation solving. The model assumes that there is a left parietal region-of-interest (ROI) where the problem expression is represented and transformed, a left prefrontal ROI where information for solving the task is retrieved, and a motor ROI where hand movements to produce the answer are programmed. A functional magnetic resonance imaging (fMRI) study of an abstract symbolmanipulation task was performed to articulate the roles of these three regions. Participants learned to associate words with instructions for transforming strings of letters. The study manipulated the need to retrieve these instructions, the need to transform the strings, and whether there was a delay between calculation of the answer and the output of the answer. As predicted, the left parietal ROI mainly reflected the need for a transformation and the left prefrontal ROI the need for retrieval. Homologous right ROIs showed similar but weaker responses. Neither the prefrontal nor the parietal ROIs responded to delay, but the motor ROI did respond to delay, implying motor rehearsal over the delay. Except for the motor ROI, these patterns of activity did not vary with response hand. In an ACT-R model, it was shown that the activity of an imaginal buffer predicted the blood oxygen level-dependent (BOLD) response of the parietal ROI, the activity of a retrieval buffer predicted the response of the prefrontal ROI, and the activity of a manual buffer predicted the response of the motor ROI.


2019 ◽  
Vol 33 (11) ◽  
pp. 1377-1387
Author(s):  
Philipp T Neukam ◽  
Yacila I Deza-Araujo ◽  
Michael Marxen ◽  
Shakoor Pooseh ◽  
Marcella Rietschel ◽  
...  

Background: Serotonin has been implicated in impulsive behaviours such as temporal discounting. While animal studies and theoretical approaches suggest that reduced tonic serotonin levels increase temporal discounting rates and vice versa, evidence from human studies is scarce and inconclusive. Furthermore, an important modulator of serotonin signalling, a genetic variation in the promoter region of the serotonin transporter gene ( 5-HTTLPR), has not been investigated for temporal discounting so far. Objective: First, the purpose of this study was to test for a significant association between 5-HTTLPR and temporal discounting. Second, we wished to investigate the effect of high/low tonic serotonin levels on intertemporal choice and blood oxygen-level-dependent response, controlling for 5-HTTLPR. Methods: We tested the association of 5-HTTLPR with temporal discounting rates using an intertemporal choice task in 611 individuals. We then manipulated tonic serotonin levels with acute tryptophan interventions (depletion, loading, balanced) in a subsample of 45 short (S)-allele and 45 long (L)/L-allele carriers in a randomised double-blind crossover design using functional magnetic resonance imaging and an intertemporal choice task. Results: Overall, we did not find any effect of serotonin and 5-HTTLPR on temporal discounting rates or the brain networks associated with valuation and cognitive control. Conclusion: Our findings indicate that serotonin may not be directly involved in choices including delays on longer timescales such as days, weeks or months. We speculate that serotonin plays a stronger role in dynamic intertemporal choice tasks where the delays are on a timescale of seconds and hence are therefore directly experienced during the experiment.


2021 ◽  
Author(s):  
Daniel Petrie ◽  
Sy-Miin Chow ◽  
Charles Geier

Pavlovian-to-instrumental transfer (PIT) refers to a phenomenon whereby a classically conditioned stimulus (CS) impacts the motivational salience of instrumental behavior. We examined behavioral response patterns and functional magnetic resonance imaging (fMRI) based effective connectivity during an avoidance-based PIT task. Eleven participants (8 females; Mage = 28.2, SD = 2.8, range = 25-32 years) completed the task. Effective connectivity between a priori brain regions engaged during the task was determined using hemodynamic response function group iterative multiple model estimation (HRF-GIMME). Behaviorally, participants exhibited specific PIT, a CS previously associated with a reinforcing outcome increased instrumental responding directed at the same outcome. We did not find evidence for general PIT; a CS did not significantly increase instrumental responding towards a different but related outcome. Using HRF-GIMME, we recovered effective connectivity maps among corticostriatal circuits engaged during the task. Group-level paths revealed directional effects from left putamen to right insula and from right putamen to right cingulate. Importantly, a direct effect of specific PIT stimuli on blood-oxygen-level-dependent (BOLD) activity in the left putamen was found. Results provide initial evidence of effective connectivity in key brain regions in an avoidance-based PIT task network. This study adds to the literature studying PIT effects in humans and employing GIMME models to understand how psychological phenomena are supported in the brain.


2005 ◽  
Vol 187 (6) ◽  
pp. 500-509 ◽  
Author(s):  
Amélie M. Achim ◽  
Martin Lepage

BackgroundNumerous studies have examined the neural correlates of episodic memory deficits in schizophrenia, yielding both consistencies and discrepancies in the reported patterns of results.AimsTo identify in schizophrenia the brain regions in which activity is consistently abnormal across imaging studies of memory.MethodData from 18 studies meeting the inclusion criteria were combined using a recently developed quantitative meta-analytic approach.ResultsRegions of consistent differential activation between groups were observed in the left inferior prefrontal cortex, medial temporal cortex bilaterally, left cerebellum, and in other prefrontal and temporal lobe regions. Subsequent analyses explored memory encoding and retrieval separately and identified between-group differences in specific prefrontal and medial temporal lobe regions.ConclusionsBeneath the apparent heterogeneity of published findings on schizophrenia and memory, a consistent and robust pattern of group differences is observed as a function of memory processes.


2007 ◽  
Vol 2007 ◽  
pp. 1-14 ◽  
Author(s):  
Lynn Nadel ◽  
Jenna Campbell ◽  
Lee Ryan

Multiple trace theory (MTT) predicts that hippocampal memory traces expand and strengthen as a function of repeated memory retrievals. We tested this hypothesis utilizing fMRI, comparing the effect of memory retrieval versus the mere passage of time on hippocampal activation. While undergoing fMRI scanning, participants retrieved remote autobiographical memories that had been previously retrieved either one month earlier, two days earlier, or multiple times during the preceding month. Behavioral analyses revealed that the number and consistency of memory details retrieved increased with multiple retrievals but not with the passage of time. While all three retrieval conditions activated a similar set of brain regions normally associated with autobiographical memory retrieval including medial temporal lobe structures, hippocampal activation did not change as a function of either multiple retrievals or the passage of time. However, activation in other brain regions, including the precuneus, lateral prefrontal cortex, parietal cortex, lateral temporal lobe, and perirhinal cortex increased after multiple retrievals, but was not influenced by the passage of time. These results have important implications for existing theories of long-term memory consolidation.


Sign in / Sign up

Export Citation Format

Share Document