scholarly journals Interictal Epileptiform Discharges are Task Dependent and are Associated with Lasting Electrocorticographic Changes

2021 ◽  
Vol 2 (2) ◽  
Author(s):  
Stephen Meisenhelter ◽  
Robert J Quon ◽  
Sarah A Steimel ◽  
Markus E Testorf ◽  
Edward J Camp ◽  
...  

Abstract The factors that control the occurrence of interictal epileptiform discharges (IEDs) are not well understood. We suspected that this phenomenon reflects an attention-dependent suppression of interictal epileptiform activity. We hypothesized that IEDs would occur less frequently when a subject viewed a task-relevant stimulus compared with viewing a blank screen. Furthermore, IEDs have been shown to impair memory when they occur in certain regions during the encoding or recall phases of a memory task. Although these discharges have a short duration, their impact on memory suggests that they have longer lasting electrophysiological effects. We found that IEDs were associated with an increase in low-frequency power and a change in the balance between low- and high-frequency oscillations for several seconds. We found that the occurrence of IEDs is modified by whether a subject is attending to a word displayed on screen or is observing a blank screen. In addition, we found that discharges in brain regions in every lobe impair memory. These findings elucidate the relationship between IEDs and memory impairment and reveal the task dependence of the occurrence of IEDs.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Robert J. Quon ◽  
Michael A. Casey ◽  
Edward J. Camp ◽  
Stephen Meisenhelter ◽  
Sarah A. Steimel ◽  
...  

AbstractThere is growing evidence for the efficacy of music, specifically Mozart’s Sonata for Two Pianos in D Major (K448), at reducing ictal and interictal epileptiform activity. Nonetheless, little is known about the mechanism underlying this beneficial “Mozart K448 effect” for persons with epilepsy. Here, we measured the influence that K448 had on intracranial interictal epileptiform discharges (IEDs) in sixteen subjects undergoing intracranial monitoring for refractory focal epilepsy. We found reduced IEDs during the original version of K448 after at least 30-s of exposure. Nonsignificant IED rate reductions were witnessed in all brain regions apart from the bilateral frontal cortices, where we observed increased frontal theta power during transitions from prolonged musical segments. All other presented musical stimuli were associated with nonsignificant IED alterations. These results suggest that the “Mozart K448 effect” is dependent on the duration of exposure and may preferentially modulate activity in frontal emotional networks, providing insight into the mechanism underlying this response. Our findings encourage the continued evaluation of Mozart’s K448 as a noninvasive, non-pharmacological intervention for refractory epilepsy.


Neurosurgery ◽  
1978 ◽  
Vol 2 (2) ◽  
pp. 114-121 ◽  
Author(s):  
J.M. Van Buren ◽  
D.V. Lewis ◽  
W.H. Schuette ◽  
W.C. Whitehouse ◽  
C. Ajmone Marsan

Abstract In 14 patients operated upon for focal cerebral seizures under local anesthesia, cortical electrical activity was compared with the levels of nicotinamide adenine dinucleotide (NADH) observed fluorometrically. NADH levels fell 3 to 15% in response to 5-second intervals of cortical stimulation in 42 of 70 observations. Although a rough correlation was seen between the quantity of current delivered (milliamperes × seconds) and the NADH decrease, this varied from case to case. The presence of cortical afterdischarge often, but not invariably, corresponded to a greater percentage of change in the NADH levels. Averaging the NADH response to sporadic interictal epileptiform discharges failed to demonstrate concomitant NADH reductions. A similar lack of change was seen in four patients in whom low frequency spike foci were induced by topically applied penicillin in cortex destined for excision. Preliminary studies of the topography of spread of NADH change after cortical stimulation indicate that this is usually asymmetrical in human epileptogenic cortex. Under experimental conditions in cats, it seemed possible to differentiate primary from projected epileptiform activity, in that the projected activity had little or no concomitant fall in the NADH level after the electrographic spike. Pathological examination of the excised sites of NADH recording showed, with one exception, fibrous astrocytic transformation of the central cortex layers.


2021 ◽  
Vol 12 ◽  
Author(s):  
Seyyed Mostafa Sadjadi ◽  
Elias Ebrahimzadeh ◽  
Mohammad Shams ◽  
Masoud Seraji ◽  
Hamid Soltanian-Zadeh

Combining functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) enables a non-invasive investigation of the human brain function and evaluation of the correlation of these two important modalities of brain activity. This paper explores recent reports on using advanced simultaneous EEG–fMRI methods proposed to map the regions and networks involved in focal epileptic seizure generation. One of the applications of EEG and fMRI combination as a valuable clinical approach is the pre-surgical evaluation of patients with epilepsy to map and localize the precise brain regions associated with epileptiform activity. In the process of conventional analysis using EEG–fMRI data, the interictal epileptiform discharges (IEDs) are visually extracted from the EEG data to be convolved as binary events with a predefined hemodynamic response function (HRF) to provide a model of epileptiform BOLD activity and use as a regressor for general linear model (GLM) analysis of the fMRI data. This review examines the methodologies involved in performing such studies, including techniques used for the recording of EEG inside the scanner, artifact removal, and statistical analysis of the fMRI signal. It then discusses the results reported for patients with primary generalized epilepsy and patients with different types of focal epileptic disorders. An important matter that these results have brought to light is that the brain regions affected by interictal epileptic discharges might not be limited to the ones where they have been generated. The developed methods can help reveal the regions involved in or affected by a seizure onset zone (SOZ). As confirmed by the reviewed literature, EEG–fMRI provides information that comes particularly useful when evaluating patients with refractory epilepsy for surgery.


2021 ◽  
Vol 14 ◽  
Author(s):  
Olivia N. Arski ◽  
Julia M. Young ◽  
Mary-Lou Smith ◽  
George M. Ibrahim

Working memory (WM) deficits are pervasive co-morbidities of epilepsy. Although the pathophysiological mechanisms underpinning these impairments remain elusive, it is thought that WM depends on oscillatory interactions within and between nodes of large-scale functional networks. These include the hippocampus and default mode network as well as the prefrontal cortex and frontoparietal central executive network. Here, we review the functional roles of neural oscillations in subserving WM and the putative mechanisms by which epilepsy disrupts normative activity, leading to aberrant oscillatory signatures. We highlight the particular role of interictal epileptic activity, including interictal epileptiform discharges and high frequency oscillations (HFOs) in WM deficits. We also discuss the translational opportunities presented by greater understanding of the oscillatory basis of WM function and dysfunction in epilepsy, including potential targets for neuromodulation.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Antonio Díaz-Negrillo

Sleep is probably one of the most important physiological factors implicated both in epileptic seizures and interictal epileptiform discharges. The neurophysiology concerning the relationship between sleep and epilepsy is well described in the literature; however, the pathological events that culminate in the seizures are poorly explored. The present paper intends to make a rigorous approach to the main mechanisms involved in this reciprocal relation. Knowledge of sleep and sleep deprivation effects in epilepsy stands as crucial in the understanding of how seizures are produced, their possible lines of treatment, and future research.


2004 ◽  
Vol 19 (3) ◽  
pp. 363-369
Author(s):  
Hideaki Shiraishi ◽  
Steven M. Stufflebeam ◽  
Susanne Knake ◽  
Seppo P. Ahlfors ◽  
Akira Sudo ◽  
...  

Our current purpose is to evaluate the applicability of dynamic statistical parametric mapping, a novel method for localizing epileptiform activity recorded with magnetoencephalography in patients with epilepsy. We report four pediatric patients with focal epilepsies. Magnetoencephalographic data were collected with a 306-channel whole-head helmet-shaped sensor array. We calculated equivalent current dipoles and dynamic statistical parametric mapping movies of the interictal epileptiform discharges that were based in the minimum-L2 norm estimate, minimizing the square sum of the dipole element amplitudes. The dynamic statistical parametric mapping analysis of interictal epileptiform discharges can demonstrate the rapid change and propagation of interical epileptiform discharges. According to these findings, specific epileptogenic lesion—focal cortical dysplasia could be found and patients could be operated on successfully. The presurgical analysis of interictal epileptiform discharges using dynamic statistical parametric mapping seems to be promising in patients with a possible underlying focal cortical dysplasia and might help to guide the placement of invasive electrodes. ( J Child Neurol 2005;20:363—369).


2017 ◽  
Vol 44 (3-4) ◽  
pp. 128-134 ◽  
Author(s):  
Fabricio O. Lima ◽  
João A.G. Ricardo ◽  
Ana C. Coan ◽  
Diogo C. Soriano ◽  
Wagner M. Avelar ◽  
...  

Background and Purpose: The prognostic significance of interictal epileptiform discharges (IED) and periodic patterns (PP) after ischemic stroke has not been assessed. We sought to test whether IED and PP, detected on standard Electroencephalography (EEG) performed during the acute phase of ischemic stroke are associated with a worse functional outcome. Methods: One-hundred-fifty-seven patients 18 years or older with a diagnosis of acute ischemic stroke presenting within 72 h from stroke onset were prospectively enrolled and followed. Patients with a pre-stroke history of seizures or epilepsy, previous debilitating neurological disease or conditions that precluded the performance of EEG were excluded. Interpretation was performed by a blinded board certified neurophysiologist. IED and PP (grouped as epileptiform activity [EA]) were defined according to proposed guidelines. Univariable and multivariable analyses were used to identify predictors of outcome (modified Rankin Scale dichotomized ≤2 vs. ≥3) at 3 months. Results: In the univariable analysis, admission NIHSS (OR 1.20, 95% CI 1.12-1.28, p = 0.001), age (OR 1.03, 95% CI 1.01-1.05, p = 0.02), and presence of EA (OR 2.94, 95% CI 1.51-5.88, p = 0.001) were significantly associated with the outcome at 3 months. In the multivariable analysis, only admission NIHSS (OR 1.19, 95% CI 1.11-1.28, p < 0.001) and the presence of EA (OR 2.27, 95% CI 1.04-5.00, p = 0.04) were independently associated with the prognosis. Significance: The importance of EEG in the prognosis of acute ischemic stroke warrants additional research, examining the role of medication therapy on the outcome and the occurrence of seizures for those patients with specific EEG patterns.


2021 ◽  
Vol 71 (1) ◽  
Author(s):  
Morteza Salimi ◽  
Farhad Tabasi ◽  
Milad Nazari ◽  
Sepideh Ghazvineh ◽  
Alireza Salimi ◽  
...  

AbstractCognitive functions such as working memory require integrated activity among different brain regions. Notably, entorhinal cortex (EC) activity is associated with the successful working memory task. Olfactory bulb (OB) oscillations are known as rhythms that modulate rhythmic activity in widespread brain regions during cognitive tasks. Since the OB is structurally connected to the EC, we hypothesized that OB could modulate EC activity during working memory performance. Herein, we explored OB–EC functional connectivity during spatial working memory performance by simultaneous recording local field potentials when rats performed a Y-maze task. Our results showed that the coherence of delta, theta, and gamma-band oscillations between OB and EC was increased during correct trials compared to wrong trials. Cross-frequency coupling analyses revealed that the modulatory effect of OBs low-frequency phase on EC gamma power and phase was enhanced when animals correctly performed working memory task. The influx of information from OB to EC was also increased at delta and gamma bands within correct trials. These findings indicated that the modulatory influence of OB rhythms on EC oscillations might be necessary for successful working memory performance.


Sign in / Sign up

Export Citation Format

Share Document