Impact of chronic stylet-feeder infestation on folivore-induced signaling and defenses in a conifer

2020 ◽  
Author(s):  
Chad M Rigsby ◽  
Mélanie J A Body ◽  
Amelia May ◽  
Anita Oppong ◽  
Amy Kostka ◽  
...  

Abstract Our understanding of how conifers respond biochemically to multiple simultaneous herbivore attacks is lacking. Eastern hemlock (Tsuga canadensis; ‘hemlock’) is fed on by hemlock woolly adelgid (Adelges tsugae; ‘adelgid’) and by later-instar gypsy moth (Lymantria dispar; ‘gypsy moth’) caterpillars. The adelgid is a stylet-feeding insect that causes a salicylic acid (SA)-linked response in hemlock and gypsy moth larvae are folivores that presumably cause a jasmonic acid (JA)-linked response. This system presents an opportunity to study how invasive herbivore-herbivore interactions mediated through host biochemical responses. We used a factorial field experiment to challenge chronically adelgid-infested hemlocks with gypsy moth caterpillars. We quantified 17 phytohormones, 26 phenolic and terpene metabolites, and proanthocyanidin, cell wall-bound phenolic, and lignin contents. Foliage infested with adelgid only accumulated gibberellins (GAs) and SA; foliage challenged by gypsy moth only accumulated JA phytohormones. Gypsy moth folivory on adelgid-infested foliage reduced accumulation of JA phytohormones and increased SA levels. Both herbivores increased cell wall-bound phenolics and gypsy moth increased lignin content when feeding alone but not when feeding on adelgid-infested foliage. Our study illustrates the importance of understanding the biochemical mechanisms and signaling antagonism underlying tree responses to multiple stresses, and of disentangling local and systemic stress signaling in trees.

2006 ◽  
Vol 36 (6) ◽  
pp. 1435-1450 ◽  
Author(s):  
Anne K Eschtruth ◽  
Natalie L Cleavitt ◽  
John J Battles ◽  
Richard A Evans ◽  
Timothy J Fahey

Hemlock woolly adelgid (HWA; Adelges tsugae Annand) infestations have resulted in the continuing decline of eastern hemlock (Tsuga canadensis (L.) Carrière) throughout much of the eastern United States. In 1994 and 2003, we quantified the vegetation composition and structure of two hemlock ravines in the Delaware Water Gap National Recreation Area. This is the first study to use pre-adelgid disturbance data, annual monitoring of infestation severity, and annual records of hemlock health to assess forest response to HWA infestation. In 2003, 25% of monitored hemlock trees were either dead or in severe decline. Measures of hemlock decline (crown vigor, transparency, density, and dieback) were correlated with HWA infestation severity and changes in light availability over the study period. Average percent total transmitted radiation more than doubled at these sites from 5.0% in 1994 to 11.7% in 2003. The total percent cover of vascular plants increased from 3.1% in 1994 to 11.3% in 2003. Species richness increased significantly, and more species were gained (53) than lost (19) from both ravine floras over the 9-year study period. Though exotic invasive plants were absent from these ravines in 1994, our 2003 resurvey found invasive plants in 35% of the permanent vegetation plots.


Insects ◽  
2018 ◽  
Vol 9 (4) ◽  
pp. 172 ◽  
Author(s):  
Aaron Ellison ◽  
David Orwig ◽  
Matthew Fitzpatrick ◽  
Evan Preisser

The nonnative hemlock woolly adelgid is steadily killing eastern hemlock trees in many parts of eastern North America. We summarize impacts of the adelgid on these forest foundation species; review previous models and analyses of adelgid spread dynamics; and examine how previous forecasts of adelgid spread and ecosystem dynamics compare with current conditions. The adelgid has reset successional sequences, homogenized biological diversity at landscape scales, altered hydrological dynamics, and changed forest stands from carbon sinks into carbon sources. A new model better predicts spread of the adelgid in the south and west of the range of hemlock, but still under-predicts its spread in the north and east. Whether these underpredictions result from inadequately modeling accelerating climate change or accounting for people inadvertently moving the adelgid into new locales needs further study. Ecosystem models of adelgid-driven hemlock dynamics have consistently forecast that forest carbon stocks will be little affected by the shift from hemlock to early-successional mixed hardwood stands, but these forecasts have assumed that the intermediate stages will remain carbon sinks. New forecasting models of adelgid-driven hemlock decline should account for observed abrupt changes in carbon flux and ongoing and accelerating human-driven land-use and climatic changes.


2019 ◽  
Vol 117 (4) ◽  
pp. 340-350 ◽  
Author(s):  
Heath W Garris ◽  
Thomas H Settle ◽  
Jonathan E Crossman ◽  
Stephen J Grider ◽  
Shawnté L Michaels

Abstract The neonicotinoid systemic insecticide imidacloprid has proven to be an effective treatment for the prevention and control of hemlock woolly adelgid (Adelges tsugae Annand) in southeastern populations of eastern hemlock (Tsuga canadensis L.). Recent studies have demonstrated that imidacloprid and A. tsugae both stimulate salicylic acid-dependent physiological responses in plant tissues responsible for plant defenses against pathogens, timing of developmental outcomes including flowering and leaf senescence, and resilience to abiotic stressors. We evaluated the interacting effects of A. tsugae presence/absence and treatment with imidacloprid on leaf optical properties indicative of photosynthetic potential, photosynthetic efficiency, and tissue senescence. Our results indicated that A. tsugae changes lower canopy leaf optical properties indicative of reduced photosynthetic potential/efficiency and accelerated senescence in mature leaves. Imidacloprid was associated with declines in photosynthetic potential and showed a largely similar, though less pronounced, effect on leaf spectral properties to that of A. tsugae.


1999 ◽  
Vol 29 (5) ◽  
pp. 630-645 ◽  
Author(s):  
Jennifer C Jenkins ◽  
John D Aber ◽  
Charles D Canham

Mortality of dominant tree species caused by introduced pests and pathogens have been among the most pervasive and visible impacts of humans on eastern U.S. forests in the 20th century, yet little is known about the ecosystem-level consequences of these invasions. In this study we quantified the impacts of the introduced hemlock woolly adelgid (Adelges tsugae Annand) on community structure and ecosystem processes in eastern hemlock (Tsuga canadensis (L.) Carr.) forests in southern New England. Data were collected at six hemlock-dominated sites spanning a continuum from 0 to 99% mortality. Light availability to the understory and seedling regeneration both increased in stands affected by the adelgid. Differences in soil organic matter, total C, and total N pools between infested and noninfested sites were not associated with hemlock decline. Net N mineralization, nitrification, and N turnover increased at sites experiencing hemlock mortality. Inorganic N availability and nitrification rates increased dramatically with adelgid infestation and hemlock mortality, suggesting that nitrate leaching is likely in regions experiencing hemlock mortality. In the longer term, ecosystem processes at infested stands are likely to be driven by the successional dynamics that follow hemlock mortality.


2013 ◽  
Vol 199 (2) ◽  
pp. 452-463 ◽  
Author(s):  
Jean-Christophe Domec ◽  
Laura N. Rivera ◽  
John S. King ◽  
Ilona Peszlen ◽  
Fred Hain ◽  
...  

2021 ◽  
Vol 47 (1) ◽  
pp. 25-33
Author(s):  
Joseph Doccola

Eastern hemlock (Tsuga canadensis [L.] Carrière) is an important component of the riparian ecosystem. Due to the widespread establishment of hemlock woolly adelgid (Adelges tsugae Annand)(HWA) across the range of eastern hemlock, woodland trees may be infested for extended periods (years), resulting in their decline. Imidacloprid, a systemic neonicotinoid insecticide, may be used as a strategy in forested settings to manage HWA while more long-term solutions become established, such as biological controls. Symptoms of prolonged infestation include extensive dieback and thinned canopies. In this study, trees with a diameter at breast height (DBH) of 24.7 ± 2.7 SD cm in poor condition were treated with imidacloprid. Trees were treated once by trunk-injection (IMA-jet) or by soil drench in the Greenbrier area of the Great Smoky Mountains National Park, Gatlinburg, TN, USA. Changes in tree growth and HWA density were measured for 3 consecutive years. Imidacloprid-treated trees recovered, whereas the untreated trees declined. Imidacloprid treatments resulted in significantly higher 3-year mean percent growth (65.6% to 71.7% of tips) compared to the untreated controls (10.5% of tips). HWA density 3-year means in the imidacloprid-treated trees (0.10 to 1.09 per cm) likewise were statistically different to the untreated trees (2.72 per cm). The extended activity of imidacloprid-treated hemlock was attributed to storage in the symplast (xylem ray parenchyma) and to perennial needle retention. This study demonstrates that trunk-injection with IMA-jet is effective against HWA and comparable with soil drench to protect trees in the long term (≥ 4 years).


2011 ◽  
Vol 41 (12) ◽  
pp. 2433-2439 ◽  
Author(s):  
Evan L. Preisser ◽  
Mailea R. Miller-Pierce ◽  
Jacqueline Vansant ◽  
David A. Orwig

The hemlock woolly adelgid (Adelges tsugae Annand) is an invasive hemipteran that poses a major threat to eastern hemlock (Tsuga canadensis (L.) Carrière) forests in the United States. We conducted three surveys over a five-year period that assessed the density of hemlock woolly adelgid (HWA) and a second invasive pest, the elongate hemlock scale (EHS; Fiorinia externa Ferris), overstory hemlock mortality, and hemlock regeneration in ~140 hemlock stands (mean size, 44 ha; range, 7–305 ha) within a 7500 km2 north–south transect of southern New England (USA). In each stand, we rated HWA and EHS density on 50 hemlock trees using a 0–3 scale (0, none; 1, 1–10 organisms/m branch; 2, 11–100 organisms/m branch; 3, >100 organisms/m branch). Data on the presence or absence of regeneration were taken in 2005; in 2007 and 2009, we quantitatively assessed regeneration by counting the number of hemlock seedlings in three 16 m2 plots per stand. In 2005, 81% of sampled stands had HWA, 72% had EHS, and 66% had hemlock regeneration. In 2007, 86% of sampled stands had HWA, 79% had EHS, and 46% had hemlock regeneration. In 2009, 91% of stands had HWA, 87% had EHS, and 37% had hemlock regeneration. The proportion of stands with hemlock regeneration declined 46% between 2005 and 2009, and hemlock seedling density declined 71% between 2007 and 2009. A best-fit model selection algorithm found that this decrease was inversely correlated with stand-level adelgid density. There was no correlation between the change in seedling density and stand-level density of the elongate hemlock scale. The apparent decline in regeneration suggests that the ecosystem-level changes currently occurring in southern New England may be difficult to reverse.


2010 ◽  
Vol 40 (1) ◽  
pp. 119-133 ◽  
Author(s):  
Marco Albani ◽  
Paul R. Moorcroft ◽  
Aaron M. Ellison ◽  
David A. Orwig ◽  
David R. Foster

The hemlock woolly adelgid (HWA; Adelges tsugae Annand) is an introduced insect pest that threatens to decimate eastern hemlock ( Tsuga canadensis (L.) Carriere) populations. In this study, we used the ecosystem demography model in conjunction with a stochastic model of HWA spread to predict the impact of HWA infestation on the current and future forest composition, structure, and carbon (C) dynamics in the eastern United States. The spread model predicted that on average the hemlock stands south and east of the Great Lakes would be infested by 2015, southern Michigan would be reached by 2020, and northeastern Minnesota by 2030. For the period 2000–2040, the ecosystem demography model predicted a mean reduction of 0.011 Pg C·year–1 (Pg C = 1015 g C), an 8% decrease, in the uptake of carbon from eastern United States forests as a result of HWA-caused mortality, followed by an increased uptake of 0.015 Pg C·year–1 (a 12% increase) in the period 2040–2100, as the area recovers from the loss of hemlock. Overall, we conclude that while locally severe, HWA infestation is unlikely to have a significant impact on the regional patterns of carbon fluxes, given that eastern hemlock represents a limited fraction of the standing biomass of eastern forests and that it has relatively low productivity compared with the tree species that are likely to replace it.


2017 ◽  
Vol 47 (1) ◽  
pp. 81-88 ◽  
Author(s):  
Kathryn B. Piatek ◽  
Mary Ann Fajvan ◽  
Richard M. Turcotte

Stand thinning is being tested as a means to limit the impacts of the invasive hemlock woolly adelgid (HWA; Adelges tsugae Annand) on eastern hemlock (Tsuga canadensis (L.) Carriere). The efficacy of this strategy may be reduced if thinning increases hemlock foliar nutrients because HWA densities are correlated with foliar concentrations of N, P, K, Ca, and Mn. We determined foliar N, P, K, Ca, and Mn concentrations in 1-year-old and all other (older) needles prior to and for 4 years after thinning in northwestern Pennsylvania stands of eastern hemlock without HWA. Average foliar concentrations in 1-year-old needles were 1.30–1.80 g N·100 g−1, 1300–1700 mg P·kg−1, 4200–6300 mg K·kg−1, 2500–5200 mg Ca·kg−1, and 2393 μg Mn·g−1. N, P, and K decreased, Ca increased, and Mn first increased and then stabilized. Thinning by itself did not affect the tested foliar nutrients. The interaction between treatment and year was significant and evident in temporal trajectories of foliar N and K. However, the differences between thinned and unthinned plots within years averaged only 0.03 g N·100 g−1 and 340 mg K·kg−1. We concluded that even though thinning changed the temporal trajectories of foliar N and K, the nutritional shifts were minimal, brief, and unlikely to affect the efficacy of thinning in limiting the impacts of HWA.


Sign in / Sign up

Export Citation Format

Share Document