scholarly journals Tree-ring δ13C and δ18O, leaf δ13C and wood and leaf N status demonstrate tree growth strategies and predict susceptibility to disturbance

2016 ◽  
Vol 36 (5) ◽  
pp. 576-588 ◽  
Author(s):  
S.A. Billings ◽  
A.S. Boone ◽  
F.M. Stephen
2021 ◽  
Author(s):  
Milagros Rodriguez-Caton ◽  
Laia Andreu-Hayles ◽  
Mariano S Morales ◽  
Valérie Daux ◽  
Duncan A Christie ◽  
...  

Abstract Tree growth is generally considered to be temperature-limited at upper elevation treelines. Yet, climate factors controlling tree growth at semiarid treelines are poorly understood. We explored the influence of climate on stem growth and stable isotopes for Polyepis tarapacana, the world’s highest elevation tree-species found only in the South American Altiplano. We developed tree-ring width index (RWI), oxygen (δ18O) and carbon (δ13C) chronologies for the last 60 years at four P. tarapacana stands located above 4,400 meters in elevation, along a 500-km latitude-aridity gradient. Total annual precipitation decreased from 300 to 200 mm from the northern to the southern sites. We used RWI as a proxy of wood formation (carbon sink) and isotopic tree-ring signatures as proxies of leaf-level gas exchange processes (carbon source). We found distinct climatic conditions regulating carbon-sink processes along the gradient. Current-growing season temperature regulated RWI at wetter-northern sites, while prior-growing season precipitation determined RWI at arid-southern sites. This suggests that the relative importance of temperature to precipitation in regulating tree growth is driven by site-water availability. In contrast, warm and dry growing-seasons resulted in enriched tree-ring δ13C and δ18O at all study sites, suggesting that similar climate conditions control carbon-source processes. Site-level δ13C and δ18O chronologies were significantly and positively related at all sites, with the strongest relationships among the southern-drier stands. This indicates an overall regulation of intercellular carbon dioxide via stomatal conductance for the entire P. tarapacana network, with greater stomatal control when aridity increases. The manuscript also highlights a coupling and decoupling of physiological processes at leaf level versus wood formation depending on their respectively uniform and distinct sensitivity to climate. This study contributes to better understand and predict the response of high-elevation Polylepis woodlands to rapid climate changes and projected drying in the Altiplano.


2017 ◽  
Vol 41 (4) ◽  
pp. 478-495 ◽  
Author(s):  
UK Thapa ◽  
S St. George ◽  
DK Kharal ◽  
NP Gaire

The climate of Nepal has changed rapidly over the recent decades, but most instrumental records of weather and hydrology only extend back to the 1980s. Tree rings can provide a longer perspective on recent environmental changes, and since the early 2000s, a new round of field initiatives by international researchers and Nepali scientists have more than doubled the size of the country’s tree-ring network. In this paper, we present a comprehensive analysis of the current tree-ring width network for Nepal, and use this network to estimate changes in forest growth nation-wide during the last four centuries. Ring-width chronologies in Nepal have been developed from 11 tree species, and half of the records span at least 290 years. The Nepal tree-ring width network provides a robust estimate of annual forest growth over roughly the last four centuries, but prior to this point, our mean ring-width composite fluctuates wildly due to low sample replication. Over the last four centuries, two major events are prominent in the all-Nepal composite: (i) a prolonged and widespread growth suppression during the early 1800s; and (ii) heightened growth during the most recent decade. The early 19th century decline in tree growth coincides with two major Indonesian eruptions, and suggests that short-term disturbances related to climate extremes can exert a lasting influence on the vigor of Nepal’s forests. Growth increases since AD 2000 are mainly apparent in high-elevation fir, which may be a consequence of the observed trend towards warmer temperatures, particularly during winter. This synthesis effort should be useful to establish baselines for tree-ring data in Nepal and provide a broader context to evaluate the sensitivity or behavior of this proxy in the central Himalayas.


2021 ◽  
Author(s):  
Pieter Zuidema ◽  
Flurin Babst ◽  
Peter Groenendijk ◽  
Valerie Trouet

<p>Tropical and subtropical ecosystems are primarily responsible for the large inter-annual variability (IAV) in the global carbon land sink. The response of tropical vegetation productivity to climatic variation likely drives this IAV, but the climate sensitivity of key productivity components are poorly understood. Tree-ring analysis can help fill this knowledge gap by estimating IAV in woody biomass growth, the major carbon accumulation process in tropical vegetation.</p><p> </p><p>Here, we evaluate the climate responses of woody biomass growth throughout the global tropics. Using an unprecedented compilation of tropical tree-ring data, we test hypotheses that (1) precipitation (P) and maximum temperature (T<sub>max</sub>) have opposite and additive effects on annual tree growth, (2) these climate responses amplify with increasing aridity and (3) wet-season climate is a more important driver of growth than dry-season climate.</p><p> </p><p>We established a network of 347 tree-ring width chronologies compiled from (sub-)tropical latitudes, representing 99 tree species on five continents and obtained from contributors (n=112) and the International Tree-Ring Data Bank (ITRDB; n=235). Our network is climatologically representative for 66% of the pantropical land area with woody vegetation.</p><p> </p><p>To test hypotheses we re-developed standardized ring-width index (RWI) chronologies and assessed climate responses using SOM cluster analysis (monthly P and T<sub>max</sub>) and multiple regression analysis (seasonal P and T<sub>max</sub>). Our results were consistent with hypothesis 1: effects of monthly or seasonal P and T<sub>max</sub> on tree growth were indeed additive and opposite, suggesting water availability to be the primary driver of tropical tree growth. In accordance with hypothesis 2, these climate responses were stronger at sites with lower mean annual precipitation or a larger annual water deficit. However, our results contrast those expected under hypothesis 3. Three of the four clusters show a dominant role of dry-season climate on annual tree growth and regression analyses confirmed this strong dry-season role.</p><p> </p><p>The strong dry-season effect on tropical tree growth seemingly contrasts the general notion that tropical vegetation productivity peaks during the wet season but is consistent with studies showing that climatologically benign dry seasons increase reserve storage and xylem growth. We posit that dry-season climate constrains the magnitude of woody biomass growth that takes place during the following wet season, and thus contributes to IAV in tree growth.</p><p> </p><p>By providing field-based insights on climate sensitivity of tropical vegetation productivity, our study contributes to the major task in Earth system science of quantifying, understanding, and predicting the IAV of the carbon land sink.</p>


2018 ◽  
Vol 52 ◽  
pp. 113-122 ◽  
Author(s):  
Christine Lucas ◽  
Paulina Puchi ◽  
Ludmila Profumo ◽  
Alex Ferreira ◽  
Ariel Muñoz

2006 ◽  
Vol 86 (4) ◽  
pp. 1037-1046 ◽  
Author(s):  
Yan Zhu ◽  
Yingxue Li ◽  
Wei Feng ◽  
Yongchao Tian ◽  
Xia Yao ◽  
...  

Non-destructive monitoring of leaf nitrogen (N) status can assist in growth diagnosis, N management and productivity forecast in field crops. The objectives of this study were to determine the relationships of leaf nitrogen concentration on a leaf dry weight basis (LNC) and leaf nitrogen accumulation per unit soil area (LNA) to ground-based canopy reflectance spectra, and to derive regression equations for monitoring N nutrition status in wheat (Triticum aestivum L.). Four field experiments were conducted with different N application rates and wheat cultivars across four growing seasons, and time-course measurements were taken on canopy spectral reflectance, LNC and leaf dry weights under the various treatments. In these studies, LNC and LNA in wheat increased with increasing N fertilization rates. The canopy reflectance differed significantly under varied N rates, and the pattern of response was consistent across the different cultivars and years. Overall, an integrated regression equation of LNC to normalized difference index (NDI) of 1220 and 710 nm of canopy reflectance spectra described the dynamic pattern of change in LNC in wheat. The ratios of several near infrared (NIR) bands to visible light were linearly related to LNA, with the ratio index (RI) of the average reflectance over 760, 810, 870, 950 and 1100 nm to 660 nm having the best index for quantitative estimation of LNA in wheat. When independent data were fit to the derived equations, the average root mean square error (RMSE) values for the predicted LNC and LNA relative to the observed values were no more than 15.1 and 15.2%, respectively, indicating a good fit. Our relationships of leaf N status to spectral indices of canopy reflectance can be potentially used for non-destructive and real-time monitoring of leaf N status in wheat. Key words: Wheat, leaf nitrogen concentration, leaf nitrogen accumulation, canopy reflectance, spectral index, nitrogen monitoring


2015 ◽  
Vol 166 (6) ◽  
pp. 389-398 ◽  
Author(s):  
Brigitte Rohner ◽  
Esther Thürig

Development of climate-dependent growth functions for the scenario model “Massimo” Tree growth is substantially influenced by climatic factors. In the face of climate change, climate effects should therefore be included in estimations of Switzerland's future forest productivity. In order to include climate effects in the growth functions of the “Massimo” model, which is typically applied to project forest resources in Switzerland, we statistically modelled climate effects on tree growth representatively for Switzerland by simultaneously considering further growth-influencing factors. First, we used tree ring data to evaluate how climate variables should be defined. This analyses showed that for modelling multi-year tree growth we should use averages of whole-year variables. Second, we fitted nonlinear mixed-effects models separately for the main tree species to individual-tree growth data from the Swiss National Forest Inventory. In these models, we combined climate variables defined according to the results of the tree ring study with various further variables that characterize sites, stands and individual trees. The quantified effects were generally plausible and explained convincingly the physiological differences between the species. The statistical growth models for the main tree species will now be included in the forest scenario model “Massimo”. This will allow for founded analyses of scenarios which assume changing climatic conditions.


2021 ◽  
Vol 17 (6) ◽  
pp. 2381-2392
Author(s):  
Maierdang Keyimu ◽  
Zongshan Li ◽  
Bojie Fu ◽  
Guohua Liu ◽  
Fanjiang Zeng ◽  
...  

Abstract. Trees record climatic conditions during their growth, and tree rings serve as proxy to reveal the features of the historical climate of a region. In this study, we collected tree-ring cores of hemlock forest (Tsuga forrestii) from the northwestern Yunnan area of the southeastern Tibetan Plateau (SETP) and created a residual tree-ring width (TRW) chronology. An analysis of the relationship between tree growth and climate revealed that precipitation during the non-growing season (NGS) (from November of the previous year to February of the current year) was the most important constraining factor on the radial tree growth of hemlock forests in this region. In addition, the influence of NGS precipitation on radial tree growth was relatively uniform over time (1956–2005). Accordingly, we reconstructed the NGS precipitation over the period spanning from 1600–2005. The reconstruction accounted for 28.5 % of the actual variance during the common period of 1956–2005. Based on the reconstruction, NGS was extremely dry during the years 1656, 1694, 1703, 1736, 1897, 1907, 1943, 1982 and 1999. In contrast, the NGS was extremely wet during the years 1627, 1638, 1654, 1832, 1834–1835 and 1992. Similar variations of the NGS precipitation reconstruction series and Palmer Drought Severity Index (PDSI) reconstructions of early growing season from surrounding regions indicated the reliability of the present reconstruction. A comparison of the reconstruction with Climate Research Unit (CRU) gridded data revealed that our reconstruction was representative of the NGS precipitation variability of a large region in the SETP. Our study provides the first historical NGS precipitation reconstruction in the SETP which enriches the understanding of the long-term climate variability of this region. The NGS precipitation showed slightly increasing trend during the last decade which might accelerate regional hemlock forest growth.


2017 ◽  
pp. 161-166
Author(s):  
D. Hamilton ◽  
C. Martin ◽  
M. Bennet ◽  
M. Hearnden ◽  
C.A. Asis

Author(s):  
Glenn Patrick Juday ◽  
Valerie Barber

The two most important life functions that organisms carry out to persist in the environment are reproduction and growth. In this chapter we examine the role of climate and climate variability as controlling factors in the growth of one of the most important and productive of the North American boreal forest tree species, white spruce (Picea glauca [Moench] Voss). Because the relationship between climate and tree growth is so close, tree-ring properties have been used successfully for many years as a proxy to reconstruct past climates. Our recent reconstruction of nineteenth- century summer temperatures at Fairbanks based on white spruce tree-ring characteristics (Barber et al. in press) reveals a fundamental pattern of quasi-decadal climate variability. The values in this reconstruction of nineteenth-century Fairbanks summer temperatures are surprisingly warm compared to values in much of the published paleoclimatic literature for boreal North America. In this chapter we compare our temperature reconstructions with ring-width records in northern and south-central Alaska to see whether tree-growth signals in the nineteenth century in those regions are consistent with tree-ring characteristics in and near Bonanza Creek (BNZ) LTER (25 km southwest of Fairbanks) that suggest warm temperatures during the mid-nineteenth century. We also present a conceptual model of key limiting events in white spruce reproduction and compare it to a 39-year record of seed fall at BNZ. Finally, we derive a radial growth pattern index from white spruce at nine stands across Interior Alaska that matches recent major seed crop events in the BNZ monitoring period, and we identify dates after 1800 when major seed crops of white spruce, which are infrequent, may have been produced. The boreal region is characterized by a broad zone of forest with a continuous distribution across Eurasia and North America, amounting to about 17% of the earth’s land surface area (Bonan et al. 1992). The boreal region is often conceived of as a zone of relatively homogenous climate, but in fact a surprising diversity of climates are present. During the long days of summer, continental interior locations under persistent high-pressure systems experience hot weather that can promote extensive forest fires frequently exceeding 100 kilohectares (K ha). Summer daily maximum temperatures are cooled to a considerable degree in maritime portions of the boreal region affected by air masses that originate over the North Atlantic, North Pacific, or Arctic Oceans.


Sign in / Sign up

Export Citation Format

Share Document