scholarly journals Single-provenance mature conifers show higher non-structural carbohydrate storage and reduced growth in a drier location

2017 ◽  
Vol 37 (8) ◽  
pp. 1001-1010 ◽  
Author(s):  
Frida I. Piper ◽  
Alex Fajardo ◽  
Günter Hoch
2020 ◽  
Vol 44 (1) ◽  
pp. 156-170
Author(s):  
Julieta A. Rosell ◽  
Frida I. Piper ◽  
Cipatli Jiménez‐Vera ◽  
Paula C. B. Vergílio ◽  
Carmen R. Marcati ◽  
...  

2007 ◽  
Vol 55 (8) ◽  
pp. 771 ◽  
Author(s):  
A. D. Tolsma ◽  
S. M. Read ◽  
K. G. Tolhurst

The relationships between root morphology, level of stored non-structural carbohydrates and post-fire regeneration strategy were investigated in 37 Australian alpine plant species: 6 reseeders, 14 resprouters and 17 capable of both reseeding and resprouting. High concentrations of stored carbohydrate (up to 61.8% DW) were a feature of most species, with more than half of the 37 species containing non-structural carbohydrate concentrations of more than 10%. Fructan was the major reserve polysaccharide in 32 of the 37 species, with particularly high concentrations in the Asteraceae (up to 43.1%). Herbaceous species stored higher concentrations of carbohydrates and had fleshier roots than did shrub species, but swollen underground storage organs were found in only one species (Microseris scapigera sensu Willis1, Asteraceae). There was no significant relationship between post-fire regeneration strategy and either root morphology or level of carbohydrate storage, contrasting with results from drier, Mediterranean environments. Root storage of high levels of carbohydrate, and especially fructan, in Australian alpine species could therefore result from an adaptation to the alpine environment, such as a need for annual regeneration of leaf tissue in alpine conditions.


1991 ◽  
Vol 18 (1) ◽  
pp. 53 ◽  
Author(s):  
PC Pheloung ◽  
KHM Siddique

Field experiments were conducted in the eastern wheat belt of Western Australia in a dry year with and without irrigation (1987) and in a wet year (1988), comparing three cultivars of wheat differing in height and yield potential. The aim of the study was to determine the contribution of remobilisable stem dry matter to grain dry matter under different water regimes in old and modern wheats. Stem non-structural carbohydrate was labelled with 14C 1 day after anthesis and the activity and weight of this pool and the grain was measured at 2, 18 and 58 days after anthesis. Gutha and Kulin, modern tall and semi-dwarf cultivars respectively, yielded higher than Gamenya, a tall older cultivar in all conditions, but the percentage reduction in yield under water stress was greater for the modern cultivars (41, 34 and 23%). In the grain of Gamenya, the increase in 14C activity after the initial labelling was highest under water stress. Generally, loss of 14C activity from the non-structural stem dry matter was less than the increase in grain activity under water stress but similar to or greater than grain activity increase under well watered conditions. Averaged over environments and cultivars, non-structural dry matter stored in the stem contributed at least 20% of the grain dry matter.


Sign in / Sign up

Export Citation Format

Share Document