Introgression obscures lineage boundaries and phylogeographic history in the western banded gecko, Coleonyx variegatus (Squamata: Eublepharidae)

2020 ◽  
Vol 190 (1) ◽  
pp. 181-226 ◽  
Author(s):  
Dean H Leavitt ◽  
Bradford D Hollingsworth ◽  
Robert N Fisher ◽  
Tod W Reeder

Abstract The geomorphological formation of the Baja California peninsula and the Gulf of California is a principal driver of diversification for the reptiles of North America’s warm deserts. The western banded gecko, Coleonyx variegatus, is distributed throughout the Mojave, Sonoran and Peninsular deserts. In this study we use multilocus sequence data to address deep phylogeographic structure within C. variegatus. Analyses of mtDNA data recover six divergent clades throughout the range of C. variegatus. Topology of the mtDNA gene tree suggests separate origins of peninsular populations with an older lineage in the south and a younger one in the north. In contrast, analyses of multilocus nuclear data provide support for four lineages, corresponding to the subspecies C. v. abbotti, C. v. peninsularis, C. v. sonoriensis and C. v. variegatus. Phylogenetic analyses of the nuclear data recover C. v. abbotti and C. v. peninsularis as a clade, indicating a single origin of the peninsular populations. Discordance between the nuclear and mtDNA data is largely the result of repeated episodes of mtDNA introgression that have obscured both lineage boundaries and biogeographic history. Dating analyses of the combined nuclear and mtDNA data suggest that the peninsular clade diverged from the continental group in the Late Miocene.

2017 ◽  
Vol 11 (1) ◽  
pp. 53-65
Author(s):  
Andrew Hart ◽  
Kathleen Kron ◽  
Emily Gillespie

The Labrador teas are a group of nearly circumboreal shrubs or sub-shrubs inhabiting damp habitats. The 4–7 currently recognized species are classified within Rhododendron subg. Rhododendron section Rhododendron subsect. Ledum. In floral characters, these species are extremely similar. In vegetative characters, species limits in the Labrador teas have been difficult to determine because many of the traditionally used morphological characters vary continually across the geographic range. This study investigated evolutionary history and preliminary consideration of some species boundaries in the Labrador teas using DNA sequence data from five molecular markers to generate a preliminary phylogeny of R. subsect. Ledum. Data were analyzed using Maximum Parsimony, Maximum Likelihood and Bayesian methods. The nuclear data indicate a monophyletic subsect. Ledum, but chloroplast data indicate that the North American taxa have an evolutionary history separate from the European and Asian taxa, suggesting that one or both lineages of subsect. Ledum may be of hybrid origin. Additionally, our analyses suggest that taxa combined in recent treatments (i.e. Rhododendron tomentosum) represent separate lineages and should be recognized as distinct instead of included within more broadly defined species, however our current level of sampling cannot completely resolve this issue. This study lays the groundwork for future phylogenetic studies within subsect. Ledum, illustrating the need to sample more intensively across taxa in order to capture what appears to be a complex genetic and biogeographic history.


2019 ◽  
Vol 44 (4) ◽  
pp. 930-942
Author(s):  
Geraldine A. Allen ◽  
Luc Brouillet ◽  
John C. Semple ◽  
Heidi J. Guest ◽  
Robert Underhill

Abstract—Doellingeria and Eucephalus form the earliest-diverging clade of the North American Astereae lineage. Phylogenetic analyses of both nuclear and plastid sequence data show that the Doellingeria-Eucephalus clade consists of two main subclades that differ from current circumscriptions of the two genera. Doellingeria is the sister group to E. elegans, and the Doellingeria + E. elegans subclade in turn is sister to the subclade containing all remaining species of Eucephalus. In the plastid phylogeny, the two subclades are deeply divergent, a pattern that is consistent with an ancient hybridization event involving ancestral species of the Doellingeria-Eucephalus clade and an ancestral taxon of a related North American or South American group. Divergence of the two Doellingeria-Eucephalus subclades may have occurred in association with northward migration from South American ancestors. We combine these two genera under the older of the two names, Doellingeria, and propose 12 new combinations (10 species and two varieties) for all species of Eucephalus.


2021 ◽  
Vol 8 ◽  
Author(s):  
MJosé Pérez-Alvarez ◽  
Sebastián Kraft ◽  
Nicolás I. Segovia ◽  
Carlos Olavarría ◽  
Sergio Nigenda-Morales ◽  
...  

Four fin whale sub-species are currently considered valid: Balaenoptera physalus physalus in the North Atlantic, B. p. velifera in the North Pacific, B. p. quoyi and B. p. patachonica in the Southern Hemisphere. The last, not genetically validated, was described as a pygmy-type sub-species, found in low to mid latitudes of the Southern Hemisphere. Genetic analyses across hemispheres show strong phylogeographic structure, yet low geographic coverage in middle latitudes of the Southern Hemisphere impeded an assessment within the area, as well as evaluating the validity of B. p. patachonica. New mtDNA sequences from the Southeastern Pacific allowed an improved coverage of the species’ distribution. Our phylogenetic analyses showed three main lineages and contrasting phylogeographic patterns between Northern and Southern Hemispheres. Absence of recurrent female mediated gene flow between hemispheres was found; however, rare dispersal events revealing old migrations were noted. The absence of genetic structure suggests the existence of one single taxa within the Southern Hemisphere. Thus, until further evidence supporting this subspecies can be produced, such as genetic, ecological, behavioral, or morphological data, we propose that all fin whales from the Southern Hemisphere, including those from middle latitudes of the Southeastern Pacific belong to B. p. quoyi subspecies. This information is important for the current assessment of fin whales, contributing to the evaluation of the taxonomic classification and the conservation of the species.


2016 ◽  
Vol 48 (5) ◽  
pp. 387-421 ◽  
Author(s):  
Daphne F. STONE ◽  
James W. HINDS ◽  
Frances L. ANDERSON ◽  
James C. LENDEMER

AbstractA revision of the North American members of the Leptogium saturninum group (i.e. species with long lower-surface hairs, isidia, and usually smooth upper surface) is presented based on molecular phylogenetic analyses of mtSSU and nrITS sequence data, together with an extensive morphological study. Three species supported by both molecular and morphological characteristics are recognized: L. acadiense sp. nov. (distinguished by granular saturninum-type isidia, medulla composed of irregularly arranged or perpendicular hyphae), L. cookii sp. nov. (distinguished by cylindrical saturninum-type isidia) and L. hirsutum (distinguished by hirsutum-type isidia and medulla composed of loosely intertwined hyphae). One species supported by morphological characteristics, but for which no molecular data could be generated, is also recognized: L. compactum sp. nov. (distinguished by hirsutum-type isidia and medulla composed of tightly packed hyphae). Finally, L. saturninum (distinguished by granular saturninum-type isidia and medulla composed of perpendicular and parallel hyphae) is supported by morphological characteristics but molecular data from geographically diverse populations, including those near the type locality, indicate that the morphologically defined species is paraphyletic. Leptogium burnetiae is excluded from North American based on morphological study of the type. The species are described and illustrated in detail, and are distinguished morphologically by their isidium development, morphology of mature isidia, and pattern of hyphae in the medulla in transverse sections near lobe margins. A key to the members of the L. saturninum group and related species is also presented.


2021 ◽  
Author(s):  
◽  
Shay B. O'Neill

<p>The endemic fauna of the South Island has proven to be an ideal taxonomic group to examine the impact of climatic and geological processes on the evolution of New Zealand's biota since the Pliocene. This thesis examines the phylogeography of McCann's skink (Oligosoma maccanni) in order to provide insight into the relative contribution of Pliocene and Pleistocene processes on patterns of genetic structure in South Island biota. This thesis also investigates the phylogeography of the brown skink (O. zelandicum) to examine whether Cook Strait landbridges facilitated gene flow between the North and South Island in the late-Pleistocene. This thesis also investigates the presence of genealogical concordance across independent loci for the endemic alpine stick insect, Niveaphasma. I obtained mitochondrial DNA (mtDNA) sequence data (ND2 and ND4; 1284 bp) from across the range of both skink species and mtDNA (COI; 762 bp) and nuclear sequence data (EF1 ; 590 bp) from across the range of Niveaphasma. I used DGGE in order to resolve nuclear EF1 alleles and examined phylogeographic patterns in each species using Neighbour-Joining, Maximum Likelihood and Bayesian methods. Substantial phylogeographic structure was found within O. maccanni, with divergences among clades estimated to have occurred during the Pliocene. Populations in the Otago/Southland region formed a well-supported lineage within O. maccanni. A genetic break was evident between populations in east and west Otago, while north-south genetic breaks were evident within the Canterbury region. There was relatively minor phylogeographic structure within O. zelandicum. Our genetic data supports a single colonization of the North Island by O. zelandicum from the South Island, with the estimated timing of this event (0.46 Mya) consistent with the initial formation of Cook Strait. There was substantial genetic structuring identified within Niveaphasma, with a well-supported lineage present in the Otago/Southland region. There was also a genetic break between populations in Canterbury and eastern Otago with those in central Otago and Southland. The genetic data provided strong genealogical concordance between mtDNA haplotypes and nuclear alleles suggesting an accurate depiction of the historical isolation identified between the major clades of Niveaphasma. This finding offers compelling evidence for the use of nuclear gene  phylogeography alongside mtDNA for future evolutionary studies within New Zealand.</p>


2021 ◽  
Vol 46 (1) ◽  
pp. 48-69
Author(s):  
Jimmy K. Triplett ◽  
Lynn G. Clark

Abstract—The temperate bamboos are a taxonomically difficult group with nearly 600 species in approximately 30 genera and at least 12 constituent lineages. In this study, phylogenetic relationships were explored using amplified fragment length polymorphism (AFLP) data in comparison with a phylogeny based on plastid DNA sequences, with an emphasis onArundinariaof North America and its allies in East Asia (theArundinariaclade). Molecular analyses involved 248 individuals in 10 genera and 60 species. Hybridization was detected both within and among genera. Comparative analyses indicated hybrid origins for species in several widespread and well-known genera, includingHibanobambusa,Sasaella, andSemiarundinaria. Evidence also indicated thatPseudosasa japonica(the type species ofPseudosasa) is an intergeneric hybrid involvingPleioblastusandSasamorpha. In addition, cryptic hybrids were detected within and amongPleioblastus,Sasa, andSasamorpha. After accounting for hybrids, phylogenetic analyses of AFLP data provided resolution for core lineages in theArundinariaclade, includingPleioblastussensu stricto,Sasas. s., andSasamorpha.AFLP data also provided evidence for the monophyly of the North American cane bamboos (Arundinaria, three species) but failed to identify their closest relative among the East Asian taxa. The broader evolutionary implications of hybridization in the temperate bamboos are discussed along with recommendations for future studies.


2016 ◽  
Author(s):  
Felix Bast ◽  
Navreet Kaur

AbstractSalvadora oleiodes is a tropical tree species belonging to the little-known family Salvadoraceae and distributed in the arid regions of Africa and Asia. Aims of our study were to trace the microevolutionary legacy of this tree species with the help of sequence-based multi-local phylogeography and to find the comparative placement of family Salvadoraceae within angiosperm clade malvids. A total 20 geographical isolates were collected from different regions of North India, covering a major part of its species range within the Indian Subcontinent. Sequence data from nuclear-encoded Internal Transcribed Spacer region (ITS1-5.8S-ITS2) and plastid-encoded trnL-F spacer region, were generated for this species for the first time in the world. ITS-based Bayesian phylogeographic analysis revealed the existence of four clades while trnL-F spacer based Bayesian analysis revealed one clade for this species distributed in the Indian subcontinent. Between these two loci, ITS revealed more distinct phylogeographic clades, indicating the phylogeographic utility of this locus for the systematics of Salvadoraceae. Phylogenetic analyzes based on trnL-F spacer suggested a synonymy of this species with Salvadora angustifolia. Maximum Likelihood gene tree based on ITS sequence data revealed that Salvadoraceae belongs to Sapindales rather than Brassicales. However, in the gene tree based on trnL-F spacer sequence, this family clustered within Brassicales. An evolutionary congruence of S. oleoides isolates across its range in North India is revealed in this study. Given the conflicting results on the relative placement of Salvadoraceae in Brassicales and Sapindales, the need for further phylogenetic analyses of malvids using supermatrix approach is highlighted.


2006 ◽  
Vol 84 (3) ◽  
pp. 453-468 ◽  
Author(s):  
Chang-Shook Lee ◽  
Stephen R. Downie

The genus Cicuta (Apiaceae tribe Oenantheae Dumort.) is the most virulently poisonous group of flowering plants native to the north temperate zone. A recent treatment recognized four species ( C. bulbifera L., C. douglasii (DC.) J.M. Coult. & Rose, C. maculata L., and C. virosa L.), with C. maculata divided into four varieties. We present results of phylogenetic analyses of the nuclear ribosomal DNA (rDNA) internal transcribed spacer (ITS) locus and the region bounded by the chloroplast genes psbI and trnK 5′ exon to determine taxonomic limits and relationships among these taxa, and to assess the taxonomic status of C. douglasii, a polyploid thought to be derived from C. maculata and C. virosa. Cicuta bulbifera and C. virosa are each resolved as monophyletic, the latter is a sister group to all other species. Discordance between the ITS- and plastid-derived phylogenies and lack of resolution in the ITS trees preclude unequivocal hypotheses of relationship; all trees do suggest, however, that the allotetraploid C. douglasii is polyphyletic and possibly polytopic, with all examined accessions but one nested within C. maculata. This single outstanding accession is from California and, pending further study, might warrant recognition as a distinct species. The diploid C. bulbifera may also be of hybrid origin, as revealed by significant discordance between data sets. Within C. maculata, only the western North American var. angustifolia Hook. is resolved in the ITS trees. In the cpDNA trees, C. maculata var. angustifolia comprises a strongly supported clade with C. maculata var. bolanderi (S. Watson) G.A. Mulligan and C. douglasii, both of primarily western North American distribution. The eastern North American taxa, C. maculata vars. maculata and victorinii (Fernald) B. Boivin, also comprise a clade, sister group to C. bulbifera.


ZooKeys ◽  
2020 ◽  
Vol 932 ◽  
pp. 27-74 ◽  
Author(s):  
Avery S. Hatch ◽  
Haebin Liew ◽  
Stéphane Hourdez ◽  
Greg W. Rouse

Polynoidae Kinberg, 1856 has five branchiate genera: Branchipolynoe Pettibone, 1984, Branchinotogluma Pettibone, 1985, Branchiplicatus Pettibone, 1985, Peinaleopolynoe Desbruyères &amp; Laubier, 1988, and Thermopolynoe Miura, 1994, all native to deep-sea, chemosynthetic-based habitats. Of these, Peinaleopolynoe has two accepted species; Peinaleopolynoe sillardi Desbruyères &amp; Laubier, 1988 (Atlantic Ocean) and Peinaleopolynoe santacatalina Pettibone, 1993 (East Pacific Ocean). The goal of this study was to assess the phylogenetic position of Peinaleopolynoe, utilizing DNA sequences from a broad sampling of deep-sea polynoids. Representatives from all five branchiate genera were included, several species of which were sampled from near the type localities; Branchinotogluma sandersi Pettibone, 1985 from the Galápagos Rift (E/V “Nautilus”); Peinaleopolynoe sillardi from organic remains in the Atlantic Ocean; Peinaleopolynoe santacatalina from a whalefall off southern California (R/V “Western Flyer”) and Thermopolynoe branchiata Miura, 1994 from Lau Back-Arc Basin in the western Pacific (R/V “Melville”). Phylogenetic analyses were conducted using mitochondrial (COI, 16S rRNA, and CytB) and nuclear (18S rRNA, 28S rRNA, and H3) genes. The analyses revealed four new Peinaleopolynoe species from the Pacific Ocean that are formally described here: Peinaleopolynoe orphanae Hatch &amp; Rouse, sp. nov., type locality Pescadero Basin in the Gulf of California, Mexico (R/V “Western Flyer”); Peinaleopolynoe elvisi Hatch &amp; Rouse, sp. nov. and Peinaleopolynoe goffrediae Hatch &amp; Rouse, sp. nov., both with a type locality in Monterey Canyon off California (R/V “Western Flyer”) and Peinaleopolynoe mineoi Hatch &amp; Rouse, sp. nov. from Costa Rica methane seeps (R/V “Falkor”). In addition to DNA sequence data, the monophyly of Peinaleopolynoe is supported by the presence of ventral papillae on segments 12–15. The results also demonstrated the paraphyly of Branchinotogluma and Lepidonotopodium Pettibone, 1983 and taxonomic revision of these genera is required. We apply the subfamily name Lepidonotopodinae Pettibone 1983, for the clade comprised of Branchipolynoe, Branchinotogluma, Bathykurila, Branchiplicatus, Lepidonotopodium, Levensteiniella Pettibone, 1985, Thermopolynoe, and Peinaleopolynoe.


2021 ◽  
Author(s):  
◽  
Shay B. O'Neill

<p>The endemic fauna of the South Island has proven to be an ideal taxonomic group to examine the impact of climatic and geological processes on the evolution of New Zealand's biota since the Pliocene. This thesis examines the phylogeography of McCann's skink (Oligosoma maccanni) in order to provide insight into the relative contribution of Pliocene and Pleistocene processes on patterns of genetic structure in South Island biota. This thesis also investigates the phylogeography of the brown skink (O. zelandicum) to examine whether Cook Strait landbridges facilitated gene flow between the North and South Island in the late-Pleistocene. This thesis also investigates the presence of genealogical concordance across independent loci for the endemic alpine stick insect, Niveaphasma. I obtained mitochondrial DNA (mtDNA) sequence data (ND2 and ND4; 1284 bp) from across the range of both skink species and mtDNA (COI; 762 bp) and nuclear sequence data (EF1 ; 590 bp) from across the range of Niveaphasma. I used DGGE in order to resolve nuclear EF1 alleles and examined phylogeographic patterns in each species using Neighbour-Joining, Maximum Likelihood and Bayesian methods. Substantial phylogeographic structure was found within O. maccanni, with divergences among clades estimated to have occurred during the Pliocene. Populations in the Otago/Southland region formed a well-supported lineage within O. maccanni. A genetic break was evident between populations in east and west Otago, while north-south genetic breaks were evident within the Canterbury region. There was relatively minor phylogeographic structure within O. zelandicum. Our genetic data supports a single colonization of the North Island by O. zelandicum from the South Island, with the estimated timing of this event (0.46 Mya) consistent with the initial formation of Cook Strait. There was substantial genetic structuring identified within Niveaphasma, with a well-supported lineage present in the Otago/Southland region. There was also a genetic break between populations in Canterbury and eastern Otago with those in central Otago and Southland. The genetic data provided strong genealogical concordance between mtDNA haplotypes and nuclear alleles suggesting an accurate depiction of the historical isolation identified between the major clades of Niveaphasma. This finding offers compelling evidence for the use of nuclear gene  phylogeography alongside mtDNA for future evolutionary studies within New Zealand.</p>


Sign in / Sign up

Export Citation Format

Share Document