scholarly journals Rice Stripe Mosaic Virus–Encoded P4 Is a Weak Suppressor of Viral RNA Silencing and Is Required for Disease Symptom Development

2020 ◽  
Vol 33 (3) ◽  
pp. 412-422
Author(s):  
Chao Zhang ◽  
Dong Chen ◽  
Guoyi Yang ◽  
Xiyuan Yu ◽  
Jianguo Wu

Viral suppressors of RNA silencing (VSRs) are a cluster of viral proteins that have evolved to counteract eukaryotic antiviral RNA silencing pathways, thereby contributing to viral pathogenicity. In this study, we revealed that the matrix protein P4 encoded by rice stripe mosaic virus (RSMV), which is an emerging cytoplasmic rhabdovirus, is a weak RNA silencing suppressor. By conducting yeast two-hybrid, bimolecular fluorescence complementation, and subcellular colocalization assays, we proved that P4 interacts with the rice endogenous suppressor of gene silencing 3 (OsSGS3). We also determined that P4 overexpression has no effect on OsSGS3 transcription. However, P4 can promote the degradation of OsSGS3 via ubiquitination and autophagy. Additionally, a potato virus X–based expression system was used to confirm that P4 enhances the development of mosaic symptoms on Nicotiana benthamiana leaves by promoting hydrogen peroxide accumulation but not cell death. To verify whether P4 is a pathogenicity factor in host plants, we generated transgenic P4-overexpressing rice plants that exhibited disease-related developmental defects including decreased plant height and excessive tillering. Our data suggest that RSMV-encoded P4 serves as a weak VSR that inhibits antiviral RNA silencing by targeting OsSGS3.

2008 ◽  
Vol 21 (2) ◽  
pp. 178-187 ◽  
Author(s):  
Shahid Aslam Siddiqui ◽  
Cecilia Sarmiento ◽  
Erkki Truve ◽  
Harry Lehto ◽  
Kirsi Lehto

RNA silencing suppressor genes derived from six virus genera were transformed into Nicotiana benthamiana and N. tabacum plants. These suppressors were P1 of Rice yellow mottle virus (RYMV), P1 of Cocksfoot mottle virus, P19 of Tomato bushy stunt virus, P25 of Potato virus X, HcPro of Potato virus Y (strain N), 2b of Cucumber mosaic virus (strain Kin), and AC2 of African cassava mosaic virus (ACMV). HcPro caused the most severe phenotypes in both Nicotiana spp. AC2 also produced severe effects in N. tabacum but a much milder phenotype in N. benthamiana, although both HcPro and AC2 affected the leaf tissues of the two Nicotiana spp. in similar ways, causing hyperplasia and hypoplasia, respectively. P1-RYMV caused high lethality in the N. benthamiana plants but only mild effects in the N. tabacum plants. Phenotypic alterations produced by the other transgenes were minor in both species. Interestingly, the suppressors had very different effects on crucifer-infecting Tobamovirus (crTMV) infections. AC2 enhanced both spread and brightness of the crTMV-green fluorescent protein (GFP) lesions, whereas 2b and both P1 suppressors enhanced spread but not brightness of these lesions. P19 promoted spread of the infection into new foci within the infiltrated leaf, whereas HcPro and P25 suppressed the spread of crTMV-GFP lesions.


2014 ◽  
Vol 27 (9) ◽  
pp. 944-955 ◽  
Author(s):  
Yi-Jung Kung ◽  
Pin-Chun Lin ◽  
Shyi-Dong Yeh ◽  
Syuan-Fei Hong ◽  
Nam-Hai Chua ◽  
...  

Cross-protection triggered by a mild strain of virus acts as a prophylaxis to prevent subsequent infections by related viruses in plants; however, the underling mechanisms are not fully understood. Through mutagenesis, we isolated a mutant strain of Turnip mosaic virus (TuMV), named Tu-GK, that contains an Arg182Lys substitution in helper component-proteinase (HC-ProK) that confers complete cross-protection against infection by a severe strain of TuMV in Nicotiana benthamiana, Arabidopsis thaliana Col-0, and the Arabidopsis dcl2-4/dcl4-1 double mutant defective in DICER-like ribonuclease (DCL)2/DCL4-mediated silencing. Our analyses showed that HC-ProK loses the ability to interfere with microRNA pathways, although it retains a partial capability for RNA silencing suppression triggered by DCL. We further showed that Tu-GK infection triggers strong salicylic acid (SA)-dependent and SA-independent innate immunity responses. Our data suggest that DCL2/4-dependent and –independent RNA silencing pathways are involved, and may crosstalk with basal innate immunity pathways, in host defense and in cross-protection.


2017 ◽  
Vol 30 (4) ◽  
pp. 295-300 ◽  
Author(s):  
E. Walsh ◽  
J. M. Elmore ◽  
C. G. Taylor

Root-knot nematodes damage crops around the world by developing complex feeding sites from normal root cells of their hosts. The ability to initiate and maintain this feeding site (composed of individual “giant cells”) is essential to their parasitism process. RNA silencing pathways in plants serve a diverse set of functions, from directing growth and development to defending against invading pathogens. Influencing a host’s RNA silencing pathways as a pathogenicity strategy has been well-documented for viral plant pathogens, but recently, it has become clear that silencing pathways also play an important role in other plant pathosystems. To determine if RNA silencing pathways play a role in nematode parasitism, we tested the susceptibility of plants that express a viral suppressor of RNA silencing. We observed an increase in susceptibility to nematode parasitism in plants expressing viral suppressors of RNA silencing. Results from studies utilizing a silenced reporter gene suggest that active suppression of RNA silencing pathways may be occurring during nematode parasitism. With these studies, we provide further evidence to the growing body of plant-biotic interaction research that suppression of RNA silencing is important in the successful interaction between a plant-parasitic animal and its host.


2017 ◽  
Vol 35 (2) ◽  
pp. 265-272 ◽  
Author(s):  
Mayuko Koizumi ◽  
Yumi Shimotori ◽  
Yuta Saeki ◽  
Sayaka Hirai ◽  
Shin-ichiro Oka ◽  
...  

2009 ◽  
Vol 90 (2) ◽  
pp. 519-525 ◽  
Author(s):  
Sandra Martínez-Turiño ◽  
Carmen Hernández

Viral-derived double-stranded RNAs (dsRNAs) activate RNA silencing, generating small interfering RNAs (siRNAs) which are incorporated into an RNA-induced silencing complex (RISC) that promotes homology-dependent degradation of cognate RNAs. To counteract this, plant viruses express RNA silencing suppressors. Here, we show that the coat protein (CP) of Pelargonium flower break virus (PFBV), a member of the genus Carmovirus, is able to efficiently inhibit RNA silencing. Interestingly, PFBV CP blocked both sense RNA- and dsRNA-triggered RNA silencing and did not preclude generation of siRNAs, which is in contrast with the abilities that have been reported for other carmoviral CPs. We have also found that PFBV CP can bind siRNAs and that this ability correlates with silencing suppression activity and enhancement of potato virus X pathogenicity. Collectively, the results indicate that PFBV CP inhibits RNA silencing by sequestering siRNAs and preventing their incorporation into a RISC, thus behaving similarly to unrelated viral suppressors but dissimilarly to orthologous ones.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Maria Luz Annacondia ◽  
German Martinez

Abstract Background RNA silencing has an important role mediating sequence-specific virus resistance in plants. The complex interaction of viruses with RNA silencing involves the loading of viral small interfering RNAs (vsiRNAs) into its host ARGONAUTE (AGO) proteins. As a side effect of their antiviral activity, vsiRNAs loading into AGO proteins can also mediate the silencing of endogenous genes. Here, we analyze at the genome-wide level both aspects of the interference of cucumber mosaic virus (CMV) with the RNA silencing machinery of Arabidopsis thaliana. Results We observe CMV-derived vsiRNAs affect the levels of endogenous sRNA classes. Furthermore, we analyze the incorporation of vsiRNAs into AGO proteins with a described antiviral role and the viral suppressor of RNA silencing (VSR) 2b, by combining protein immunoprecipitation with sRNA high-throughput sequencing. Interestingly, vsiRNAs represent a substantial percentage of AGO-loaded sRNAs and displace other endogenous sRNAs. As a countermeasure, the VSR 2b loaded vsiRNAs and mRNA-derived siRNAs, which affect the expression of the genes they derive from. Additionally, we analyze how vsiRNAs incorporate into the endogenous RNA silencing pathways by exploring their target mRNAs using parallel analysis of RNA end (PARE) sequencing, which allow us to identify vsiRNA-targeted genes genome-wide. Conclusions This work exemplifies the complex relationship of RNA viruses with the endogenous RNA silencing machinery and the multiple aspects of virus resistance and virulence that this interaction induces.


2014 ◽  
Vol 95 (3) ◽  
pp. 733-739 ◽  
Author(s):  
Jack H. Westwood ◽  
Mathew G. Lewsey ◽  
Alex M. Murphy ◽  
Trisna Tungadi ◽  
Anne Bates ◽  
...  

The cucumber mosaic virus (CMV) 2b viral suppressor of RNA silencing (VSR) inhibits host responses to jasmonic acid (JA), a chemical signal regulating resistance to insects. Previous experiments with a CMV subgroup IA strain and its 2b gene deletion mutant suggested that VSRs might neutralize aphid (Myzus persicae) resistance by inhibiting JA-regulated gene expression. To further investigate this, we examined JA-regulated gene expression and aphid performance in Nicotiana benthamiana infected with Potato virus X, Potato virus Y, Tobacco mosaic virus and a subgroup II CMV strain, as well as in transgenic plants expressing corresponding VSRs (p25, HC-Pro, 126 kDa and 2b). All the viruses or their VSRs inhibited JA-induced gene expression. However, this did not always correlate with enhanced aphid performance. Thus, VSRs are not the sole viral determinants of virus-induced changes in host–aphid interactions and interference with JA-regulated gene expression cannot completely explain enhanced aphid performance on virus-infected plants.


2016 ◽  
Vol 91 (1) ◽  
Author(s):  
Xiaofei Cheng ◽  
Aiming Wang

ABSTRACT RNA silencing is an innate antiviral immunity response of plants and animals. To counteract this host immune response, viruses have evolved an effective strategy to protect themselves by the expression of viral suppressors of RNA silencing (VSRs). Most potyviruses encode two VSRs, helper component-proteinase (HC-Pro) and viral genome-linked protein (VPg). The molecular biology of the former has been well characterized, whereas how VPg exerts its function in the suppression of RNA silencing is yet to be understood. In this study, we show that infection by Turnip mosaic virus (TuMV) causes reduced levels of suppressor of gene silencing 3 (SGS3), a key component of the RNA silencing pathway that functions in double-stranded RNA synthesis for virus-derived small interfering RNA (vsiRNA) production. We also demonstrate that among 11 TuMV-encoded viral proteins, VPg is the only one that interacts with SGS3. We furthermore present evidence that the expression of VPg alone, independent of viral infection, is sufficient to induce the degradation of SGS3 and its intimate partner RNA-dependent RNA polymerase 6 (RDR6). Moreover, we discover that the VPg-mediated degradation of SGS3 occurs via both the 20S ubiquitin-proteasome and autophagy pathways. Taken together, our data suggest a role for VPg-mediated degradation of SGS3 in suppression of silencing by VPg. IMPORTANCE Potyviruses represent the largest group of known plant viruses and cause significant losses of many agriculturally important crops in the world. In order to establish infection, potyviruses must overcome the host antiviral silencing response. A viral protein called VPg has been shown to play a role in this process, but how it works is unclear. In this paper, we found that the VPg protein of Turnip mosaic virus (TuMV), which is a potyvirus, interacts with a host protein named SGS3, a key protein in the RNA silencing pathway. Moreover, this interaction leads to the degradation of SGS3 and its interacting and functional partner RDR6, which is another essential component of the RNA silencing pathway. We also identified the cellular pathways that are recruited for the VPg-mediated degradation of SGS3. Therefore, this work reveals a possible mechanism by which VPg sabotages host antiviral RNA silencing to promote virus infection.


2012 ◽  
Vol 93 (8) ◽  
pp. 1841-1850 ◽  
Author(s):  
Ida Bagus Andika ◽  
Hideki Kondo ◽  
Masamichi Nishiguchi ◽  
Tetsuo Tamada

Many plant viruses encode proteins that suppress RNA silencing, but little is known about the activity of silencing suppressors in roots. This study examined differences in the silencing suppression activity of different viruses in leaves and roots of Nicotiana benthamiana plants. Infection by tobacco mosaic virus, potato virus Y and cucumber mosaic virus but not potato virus X (PVX) resulted in strong silencing suppression activity of a transgene in both leaves and roots, whereas infection by beet necrotic yellow vein virus (BNYVV) and tobacco rattle virus (TRV) showed transgene silencing suppression in roots but not in leaves. For most viruses tested, viral negative-strand RNA accumulated at a very low level in roots, compared with considerable levels of positive-strand genomic RNA. Co-inoculation of leaves with PVX and either BNYVV or TRV produced an increase in PVX negative-strand RNA and subgenomic RNA (sgRNA) accumulation in roots. The cysteine-rich proteins (CRPs) BNYVV p14 and TRV 16K showed weak silencing suppression activity in leaves. However, when either of these CRPs was expressed from a PVX vector, there was an enhancement of PVX negative-strand RNA and sgRNA accumulation in roots compared with PVX alone. Such enhancement of PVX sgRNAs was also observed by expression of CRPs of other viruses and the well-known suppressors HC-Pro and p19 but not of the potato mop-top virus p8 CRP. These results indicate that BNYVV- and TRV-encoded CRPs suppress RNA silencing more efficiently in roots than in leaves.


Sign in / Sign up

Export Citation Format

Share Document