scholarly journals Tobacco Transcription Factor WRKY1 Is Phosphorylated by the MAP Kinase SIPK and Mediates HR-Like Cell Death in Tobacco

2005 ◽  
Vol 18 (10) ◽  
pp. 1027-1034 ◽  
Author(s):  
Frank L. H. Menke ◽  
Hong-Gu Kang ◽  
Zhixiang Chen ◽  
Jeong Mee Park ◽  
Dhirendra Kumar ◽  
...  

The salicylic acid-induced protein kinase (SIPK) of tobacco, which is a mitogen-activated protein kinase (MAPK), is activated by various biotic and abiotic treatments. Overexpression of SIPK has been shown to trigger cell death. In this study, a targeted yeast two-hybrid approach identified the tobacco transcription factor WRKY1 as a potential substrate. SIPK phosphorylated WRKY1, which resulted in enhanced DNA-binding activity of WRKY1 to its cognate binding site, a W box sequence from the tobacco chitinase gene CHN50. SIPK-mediated enhancement of WRKY1 DNA-binding activity was inhibited by staurosporine, a general kinase inhibitor. Co-expression of SIPK and WRKY1 in Nicotiana benthamiana led to more rapid cell death than expression of SIPK alone, suggesting that WRKY1 is involved in the formation of hypersensitive response-like cell death and may be a component of the signaling cascade downstream of SIPK.

2002 ◽  
Vol 364 (3) ◽  
pp. 875-879 ◽  
Author(s):  
Lisa O'ROURKE ◽  
Peter R. SHEPHERD

Activation of the transcription factor signal transducer and activator of transcription 3 (STAT3) requires dimerization that is induced by phosphorylation of Tyr705, but its activity can be further modulated by phosphorylation at Ser727 in a manner that is dependent on cell context and the stimulus used. The role of STAT3 Ser727 phosphorylation in leptin signalling is currently not known. While cells transfected with the signalling-competent long form of the leptin receptor (ObRb) have been used to study leptin signalling, these are likely to be of limited use in studying STAT3 Ser727 phosphorylation due to the importance of cell background in determining the nature of the response. However, we have recently found that J774.2 macrophages endogenously express high levels of ObRb, and using these cells we find that leptin stimulates STAT3 phosphorylation on both Tyr705 and Ser727. The phosphorylation of Ser727 was not affected by rapamycin or the protein kinase C inhibitor H7 [1-(5-isoquinolinylsulphonyl)-2-methylpiperazine dihydrochloride]. While the MEK-1 [mitogen-activated protein kinase (MAP kinase)/extracellular-signal-related kinase (ERK) kinase-1] inhibitor PD98059 [(2-amino-3′-methoxyphenyl)oxanaphthalen-4-one] had no effect on leptin-stimulated phosphorylation of STAT3 Tyr705, it greatly attenuated leptin's effects on STAT3 Ser727 phosphorylation. Further, Ob's effect on the DNA binding activity of STAT3 was also greatly reduced at all time points by PD98059. Leptin-induced ERK activation in J774.2 cells shows a biphasic pattern, with an initial reduction in ERK phosphorylation for up to 10min following leptin stimulation, while at later time points phosphorylation of ERK was increased above basal levels. The increase in ERK activity corresponded with an increase in both phosphorylation of Ser727 and STAT3 DNA binding activity. These data provide the first evidence that ERK-mediated phosphorylation of Ser727 is required for full stimulation of STAT3 by leptin.


2009 ◽  
Vol 29 (24) ◽  
pp. 6449-6461 ◽  
Author(s):  
Andrew W. Truman ◽  
Ki-Young Kim ◽  
David E. Levin

ABSTRACT The Mpk1 mitogen-activated protein kinase (MAPK) of the cell wall integrity signaling pathway uses a noncatalytic mechanism to activate the SBF (Swi4/Swi6) transcription factor. Active Mpk1 forms a complex with Swi4, the DNA-binding subunit of SBF, conferring the ability to bind DNA. Because SBF activation is independent of Mpk1 catalytic activity but requires Mpk1 to be in an active conformation, we sought to understand how Mpk1 interacts with Swi4. Mutational analysis revealed that binding and activation of Swi4 by Mpk1 requires an intact D-motif-binding site, a docking surface common to MAPKs that resides distal to the phosphorylation loop but does not require the substrate-binding site, revealing a novel mechanism for MAPK target regulation. Additionally, we found that Mpk1 binds near the autoinhibitory C terminus of Swi4, suggesting an activation mechanism in which Mpk1 substitutes for Swi6 in promoting Swi4 DNA binding. Finally, we show that caffeine is an atypical activator of cell wall integrity signaling, because it induces phosphorylation of the Mpk1 C-terminal extension at Ser423 and Ser428. These phosphorylations were dependent on the DNA damage checkpoint kinases, Mec1/Tel1 and Rad53. Phosphorylation of Ser423 specifically blocked SBF activation by preventing Mpk1 association with Swi4, revealing a novel mechanism for regulating MAPK target specificity.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2463-2463
Author(s):  
Mohammad Minhajuddin ◽  
Shanshan Pei ◽  
John M Ashton ◽  
Kevin Callahan ◽  
Eleni Lagadinou ◽  
...  

Abstract Abstract 2463 Acute myeloid leukemia is malignant disease, characterized by an accumulation of immature myeloid cells. Recent studies have demonstrated that myeloid leukemia appears to arise from a population of leukemia stem cells (LSCs). LSCs typically reside in a quiescent state and therefore do not respond to standard chemotherapeutic agents, which generally target more actively dividing cells. However, LSCs do display certain unique molecular properties that can be exploited to target this relatively rare population of cells that drive disease pathogenesis. Specifically, NF-kB, a pro-survival transcription factor, is constitutively active in LSCs but not in normal hematopoietic stem cells (HSCs). Targeting this pathway by pharmaceutical approaches has been suggested as a potential strategy in the treatment of leukemia; however, inhibiting this pathway alone is not sufficient to strongly induce AML-specific cell death. Further investigation of pathways, that are unique to AML, is a key in designing more effective pharmacologic agents that specifically target the LSC. We have previously demonstrated that the naturally occurring compound parthenolide (PTL) induces apoptosis in primary AML cells, including the stem and progenitor cell. While the empirical anti-leukemic activity of PTL is clear, the underlying molecular mechanisms remain poorly understood. Here we investigate two properties associated with parthenolide-mediated cell death: i) activation of pro-apoptotic transcription factor p53, ii) inhibition of pro-survival transcription factor NF-kB. In order to evaluate the role of p53 signaling, AML cells were challenged with PTL resulting in the phosphorylation of p53 at serine-15, indicating activation p53 in response to PTL. To further investigate the role of p53 in PTL mediated responses, we generated a lentiviral vector expressing shRNAs specifically targeting p53. Leukemia cells were infected with the lentiviral vector encoding p53 shRNA or scramble control and evaluated by qPCR and western blot analysis. The data showed a significant knockdown of p53 mRNA and protein levels, as well as strong inhibition of p21 expression, indicating the specificity of p53 knockdown. Exposure of cells to PTL in which p53 has been specifically disrupted results in partial rescue from PTL mediated cell death, implicating the role of p53 in this response. Next, we performed a detailed analysis of the molecular mechanism by which PTL inhibits NF-kB pathway activity. Using a novel analog of PTL, we demonstrate that the compound directly binds to IKK-beta. Upon exposure to PTL, IKK-beta shows reduced kinase activity, indicating that binding of the drug directly impairs enzymatic function. Secondary to the inhibition of IKK-beta kinase activity, there is decreased phosphorylation of IkB-alpha at ser32/36, resulting in reduced proteosome mediated degradation. As expected, translocation of RelA/p65 to the nucleus was also impaired, resulting in decreased DNA binding activity as evidenced by electrophoretic mobility shift assay (EMSA). Interestingly, studies with a biotinylated analog also show that PTL appears to directly bind p65, we also observed a decreased phosphorylation of p65 at serine 536, an event mediating the transcriptional activity of DNA-bound p65. Inhibition of the NF-kB pathway by parthenolide also resulted in very significant inhibition of one of its well-known downstream target genes, ICAM-1 (CD54) at mRNA, protein and surface expression levels. Whether reduced ICAM-1 expression affects the biology of AML cells is as yet unknown. However, given the known role of ICAM-1 in integrin signaling, we propose that loss of ICAM-1 via NF-kB inhibition may impair the ability of AML cells to interact with their environment. Taken together, this study further elucidates the mechanisms by which PTL mediates pro-apoptotic activity in primary AML cells. PTL induces activation of p53 pathway and therefore knockdown of p53 by shRNA results in partial rescue from PTL mediated cell death. PTL also inhibits the NF-kB pathway, which includes binding of PTL to both IKK-beta and RelA/p65, which leads to decreased phosphorylation of IkB-alpha and reduced DNA binding of p65. In addition, we have discovered the ICAM-1 expression in AML cells is regulated by NF-kB, and that loss of NF-kB DNA binding activity results in loss of ICAM-1 expression. Disclosures: No relevant conflicts of interest to declare.


1995 ◽  
Vol 15 (12) ◽  
pp. 6694-6701 ◽  
Author(s):  
C Caelles ◽  
H Hennemann ◽  
M Karin

GHF-1 is a member of the POU family of homeodomain proteins. It is a cell-type-specific transcription factor responsible for determination and expansion of growth hormone (GH)- and prolactin-expressing cells in the anterior pituitary. It was previously suggested that cyclic AMP (cAMP)-responsive protein kinase A (PKA) phosphorylates GHF-1 at a site within the N-terminal arm of its homeodomain, thereby inhibiting its binding to the GH promoter. These results, however, are inconsistent with the physiological stimulation of GH production by the cAMP pathway. As reported here, cAMP agonists and PKA do not inhibit GHF-1 activity in living cells and although they stimulate the phosphorylation of GHF-1, the inhibitory phosphoacceptor site within the homeodomain is not affected. Instead, this site, Thr-220, is subject to M-phase-specific phosphorylation. As a result, GHF-1 DNA binding activity is transiently inhibited during the M phase. This activity is regained once cells enter G1, a phase during which GHF-1 phosphorylation is minimal. Thr-220 of GHF-1 is the homolog of the mitotic phosphoacceptor site responsible for the M-phase-specific inhibition of Oct-1 DNA binding Ser-382. As this site is conserved in all POU proteins, it appears that all members of this group are similarly regulated. A specific kinase activity distinct in its substrate specificity and susceptibility to inhibitors from the Cdc2 mitotic kinase or PKA was identified in extracts of mitotic cells. This novel activity could be involved in regulating the DNA binding activity of all POU proteins in a cell cycle-dependent manner.


1999 ◽  
Vol 343 (3) ◽  
pp. 615-620 ◽  
Author(s):  
Tong TANG ◽  
K. S. Srinivasa PRASAD ◽  
Mark J. KOURY ◽  
Stephen J. BRANDT

Ectopic expression of the basic helix-loop-helix transcription factor TAL1 (or SCL) is the most frequent gain-of-function mutation in T-cell acute lymphoblastic leukaemia. Gene-knockout studies in mice have demonstrated that TAL1 is required for embryonic and adult haematopoiesis, and considerable evidence suggests it also has important functions in terminal erythroid differentiation. We reported previously that TAL1 phosphorylation is stimulated by erythropoietin in splenic proerythroblasts isolated from mice infected with the anaemia-inducing strain of Friend virus and show here the signalling pathway responsible. Erythropoietin was found to stimulate nuclear mitogen-activated protein kinase activity in addition to TAL1 protein phosphorylation, both of which were quantitatively inhibited by the mitogen-activated protein kinase kinase inhibitor PD 098059 and the phosphatidylinositol 3-kinase inhibitor wortmannin. Tryptic phosphopeptide analysis of radiolabelled TAL1 immunoprecipitated from nuclear extracts of Friend virus-induced proerythroblasts revealed that phosphorylation of Ser122, shown previously to be a substrate for the mitogen-activated protein kinase ERK1 (extracellular signal-regulated protein kinase) in vitro, was specifically, although not exclusively, increased by erythropoietin and inhibited by wortmannin and PD 098059. These results are consistent with an erythropoietin-stimulated signalling pathway in which there is direct activation of a mitogen-activated protein kinase kinase by phosphatidylinositol 3-kinase and identify TAL1 as one of its nuclear targets. These data suggest, in addition, a specific mechanism by which the principal regulator of erythroid differentiation could enhance TAL1 function, in addition to increasing its expression.


2009 ◽  
Vol 8 (4) ◽  
pp. 606-616 ◽  
Author(s):  
Teresa R. Shock ◽  
James Thompson ◽  
John R. Yates ◽  
Hiten D. Madhani

ABSTRACT In Saccharomyces cerevisiae, the mating, filamentous growth (FG), and high-osmolarity glycerol (HOG) mitogen-activated protein kinase (MAPK) signaling pathways share components and yet mediate distinct responses to different extracellular signals. Cross talk is suppressed between the mating and FG pathways because mating signaling induces the destruction of the FG transcription factor Tec1. We show here that HOG pathway activation results in phosphorylation of the FG MAPK, Kss1, and the MAPKK, Ste7. However, FG transcription is not activated because HOG signaling prevents the activation of Tec1. In contrast to the mating pathway, we find that the mechanism involves the inhibition of DNA binding by Tec1 rather than its destruction. We also find that nuclear accumulation of Tec1 is not affected by HOG signaling. Inhibition by Hog1 is apparently indirect since it does not require any of the consensus S/TP MAPK phosphorylation sites on Tec1, its DNA-binding partner Ste12, or the associated regulators Dig1 or Dig2. It also does not require the consensus MAPK sites of the Ste11 activator Ste50, in contrast to a recent proposal for a role for negative feedback in specificity. Our results demonstrate that HOG signaling interrupts the FG pathway signal transduction between the phosphorylation of Kss1 and the activation of DNA binding by Tec1.


2003 ◽  
Vol 23 (17) ◽  
pp. 6243-6254 ◽  
Author(s):  
Apollina Goel ◽  
Ralf Janknecht

ABSTRACT The regulated expression of the ETS transcription factor ER81 is a prerequisite for normal development, and its dysregulation contributes to neoplasia. Here, we demonstrate that ER81 is acetylated by two coactivators/acetyltransferases, p300 and p300- and CBP-associated factor (P/CAF) in vitro and in vivo. Whereas p300 acetylates two lysine residues (K33 and K116) within the ER81 N-terminal transactivation domain, P/CAF targets only K116. Acetylation of ER81 not only enhances its ability to transactivate but also increases its DNA binding activity and in vivo half-life. Furthermore, oncogenic HER2/Neu, which induces phosphorylation and thereby activation of ER81, was less able to activate acetylation-deficient ER81 mutants, indicating that both acetyltransferase and protein kinase-specific regulatory mechanisms control ER81 activity. Importantly, HER2/Neu overexpression stimulates the ability of p300 to acetylate ER81, likely by inducing phosphorylation of p300 through the Ras→Raf→mitogen-activated protein kinase pathway. This represents a novel mechanism by which oncogenic HER2/Neu, Ras, or Raf may promote tumor formation by enhancing acetylation not only of ER81 but also of other downstream effector transcription factors as well as histones.


1994 ◽  
Vol 6 (10) ◽  
pp. 1558-1566 ◽  
Author(s):  
Bozena Kaminska ◽  
Robert K. Filipkowski ◽  
Grazyna Zurkowska ◽  
Wladyslaw Lason ◽  
Ryszard Przewlocki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document