scholarly journals The hrpB and hrpG Regulatory Genes of Ralstonia solanacearum Are Required for Different Stages of the Tomato Root Infection Process

2000 ◽  
Vol 13 (3) ◽  
pp. 259-267 ◽  
Author(s):  
Jacques Vasse ◽  
Stéphane Genin ◽  
Pascal Frey ◽  
Christian Boucher ◽  
Belen Brito

hrp genes, encoding type III secretion machinery, have been shown to be key determinants for pathogenicity in the vascular phytopathogenic bacterium Ralstonia solanacearum GMI1000. Here, we show phenotypes of R. solanacearum mutant strains disrupted in the prhJ, hrpG, or hrpB regulatory genes with respect to root infection and vascular colonization in tomato plants. Tests of bacterial colonization and enumeration in tomato plants, together with microscopic observations of tomato root sections, revealed that these strains display different phenotypes in planta. The phenotype of a prhJ mutant resembles that of the wild-type strain. An hrpB mutant shows reduced infection, colonization, and multiplication ability in planta, and induces a defense reaction similar to a vascular hypersensitive response at one protoxylem pole of invaded plants. In contrast, the hrpG mutant exhibited a wild-type level of infection at secondary root axils, but the ability of the infecting bacteria to penetrate into the vascular cylinder was significantly impaired. This indicates that bacterial multiplication at root infection sites and transit through the endodermis constitute critical stages in the infection process, in which hrpB and hrpG genes are involved. Moreover, our results suggest that the hrpG gene might control, in addition to hrp genes, other functions required for vascular colonization.

2012 ◽  
Vol 25 (4) ◽  
pp. 546-556 ◽  
Author(s):  
Charles K. Wairuri ◽  
Jacquie E. van der Waals ◽  
Antoinette van Schalkwyk ◽  
Jacques Theron

Type IV pili are virulence factors in various bacteria. Several subclasses of type IV pili have been described according to the characteristics of the structural prepilin subunit. Although type IVa pili have been implicated in the virulence of Ralstonia solanacearum, type IVb pili have not previously been described in this plant pathogen. Here, we report the characterization of two distinct tad loci in the R. solanacearum genome. The tad genes encode functions necessary for biogenesis of the Flp subfamily of type IVb pili initially described for the periodontal pathogen Aggregatibacter actinomycetemcomitans. To determine the role of the tad loci in R. solanacearum virulence, we mutated the tadA2 gene located in the megaplasmid that encodes a predicted NTPase previously reported to function as the energizer for Flp pilus biogenesis. Characterization of the tadA2 mutant revealed that it was not growth impaired in vitro or in planta, produced wild-type levels of exopolysaccharide galactosamine, and exhibited swimming and twitching motility comparable with the wild-type strain. However, the tadA2 mutant was impaired in its ability to cause wilting of potato plants. This is the first report where type IVb pili in a phytopathogenic bacterium contribute significantly to plant pathogenesis.


1997 ◽  
Vol 87 (12) ◽  
pp. 1264-1271 ◽  
Author(s):  
Elke Saile ◽  
Jeff A. McGarvey ◽  
Mark A. Schell ◽  
Timothy P. Denny

Ralstonia solanacearum is a soilborne plant pathogen that normally invades hosts through their roots and then systemically colonizes aerial tissues. Previous research using wounded stem infection found that the major factor in causing wilt symptoms was the high-molecular-mass acidic extracellular polysaccharide (EPS I), but the β-1,4-endoglucanase (EG) also contributes to virulence. We investigated the importance of EPS I and EG for invasion and colonization of tomato by infesting soil of 4-week-old potted plants with either a wild-type derivative or genetically well-defined mutants lacking EPS I, EG, or EPS I and EG. Bacteria of all strains were recovered from surface-disinfested roots and hypocotyls as soon as 4 h after inoculation; that bacteria were present internally was confirmed using immunofluorescence microscopy. However, the EPS-minus mutants did not colonize stems as rapidly as the wild type and the EG-minus mutant. Inoculations of wounded petioles also showed that, even though the mutants multiplied as well as the wild type in planta, EPS-minus strains did not spread as well throughout the plant stem. We conclude that poor colonization of stems by EPS-minus strains after petiole inoculation or soil infestation is due to reduced bacterial movement within plant stem tissues.


2007 ◽  
Vol 73 (12) ◽  
pp. 3779-3786 ◽  
Author(s):  
Enid T. Gonz�lez ◽  
Darby G. Brown ◽  
Jill K. Swanson ◽  
Caitilyn Allen

ABSTRACT To identify secreted virulence factors involved in bacterial wilt disease caused by the phytopathogen Ralstonia solanacearum, we mutated tatC, a key component of the twin-arginine translocation (Tat) secretion system. The R. solanacearum tatC mutation was pleiotropic; its phenotypes included defects in cell division, nitrate utilization, polygalacturonase activity, membrane stability, and growth in plant tissue. Bioinformatic analysis of the R. solanacearum strain GMI1000 genome predicted that this pathogen secretes 70 proteins via the Tat system. The R. solanacearum tatC strain was severely attenuated in its ability to cause disease, killing just over 50% of tomato plants in a naturalistic soil soak assay where the wild-type parent killed 100% of the plants. This result suggested that elements of the Tat secretome may be novel bacterial wilt virulence factors. To identify contributors to R. solanacearum virulence, we cloned and mutated three genes whose products are predicted to be secreted by the Tat system: RSp1521, encoding a predicted AcvB-like protein, and two genes, RSc1651 and RSp1575, that were identified as upregulated in planta by an in vivo expression technology screen. The RSc1651 mutant had wild-type virulence on tomato plants. However, mutants lacking either RSp1521, which appears to be involved in acid tolerance, or RSp1575, which encodes a possible amino acid binding protein, were significantly reduced in virulence on tomato plants. Additional bacterial wilt virulence factors may be found in the Tat secretome.


1999 ◽  
Vol 12 (5) ◽  
pp. 467-472 ◽  
Author(s):  
Franck Bertolla ◽  
Åsa Frostegård ◽  
Belen Brito ◽  
Xavier Nesme ◽  
Pascal Simonet

In this work we investigated the ability of the plant pathogen Ralstonia solanacearum to develop a state of competence in planta and to be genetically transformed during the infection process. Tomato plants infected with R. solanacearum GMI1000 were inoculated with plasmid DNA. R. solanacearum clones expressing the marker gene were selected only during the period of time that bacteria were actively multiplying inside the plant vessels. Moreover, experiments in which R. solanacearum strains harboring different marker genes were co-inoculated into the plant demonstrated that infecting bacterial strains exchange genetic information in planta by a mechanism that is likely to be transformation. To our knowledge, these results constitute the first demonstration of soil microorganisms developing a state of competence in planta. The biotechnological implications of this result will be discussed.


Author(s):  
Corri D. Hamilton ◽  
Olivia R. Steidl ◽  
April M MacIntyre ◽  
Connor G. Hendrich ◽  
Caitilyn Allen

The soilborne pathogen Ralstonia solanacearum (Rs) causes a lethal bacterial wilt disease of tomato and many other crops by infecting host roots, then colonizing the water-transporting xylem vessels. Tomato xylem sap is nutritionally limiting but it does contain some carbon sources including sucrose, trehalose, and myo-inositol. Transcriptomic analyses revealed that Rs expresses distinct catabolic pathways at low cell density (LCD) and high cell density (HCD). To investigate the links between bacterial catabolism, infection stage, and virulence, we measured in planta fitness of bacterial mutants lacking specific carbon catabolic pathways expressed at either LCD or HCD. We hypothesized that early in disease, during root infection, the bacterium depends on carbon sources catabolized at LCD, while HCD carbon sources are only required later in disease during stem colonization. An Rs ΔiolG mutant unable to use the LCD-catabolized nutrient myo-inositol was defective in tomato root colonization, but after it reached the stem this strain colonized and caused symptoms as well as wild type. In contrast, Rs mutants unable to use the HCD-catabolized nutrients sucrose (ΔscrA), trehalose (ΔtreA), or both (∆scrA/treA) infected roots as well as wild type Rs but were defective in colonization and competitive fitness in mid-stems and had reduced virulence. Further, xylem sap from tomato plants colonized by ΔscrA, ΔtreA, or ΔscrA/treA Rs mutants contained twice as much sucrose as sap from plants colonized by wild-type Rs. Together, these findings suggest that quorum sensing specifically adapts Rs metabolism for success in the different nutritional environments of plant roots and xylem sap.


2001 ◽  
Vol 183 (12) ◽  
pp. 3597-3605 ◽  
Author(s):  
Julie Tans-Kersten ◽  
Huayu Huang ◽  
Caitilyn Allen

ABSTRACT Ralstonia solanacearum, a widely distributed and economically important plant pathogen, invades the roots of diverse plant hosts from the soil and aggressively colonizes the xylem vessels, causing a lethal wilting known as bacterial wilt disease. By examining bacteria from the xylem vessels of infected plants, we found thatR. solanacearum is essentially nonmotile in planta, although it can be highly motile in culture. To determine the role of pathogen motility in this disease, we cloned, characterized, and mutated two genes in the R. solanacearum flagellar biosynthetic pathway. The genes for flagellin, the subunit of the flagellar filament (fliC), and for the flagellar motor switch protein (fliM) were isolated based on their resemblance to these proteins in other bacteria. As is typical for flagellins, the predicted FliC protein had well-conserved N- and C-terminal regions, separated by a divergent central domain. The predicted R. solanacearum FliM closely resembled motor switch proteins from other proteobacteria. Chromosomal mutants lackingfliC or fliM were created by replacing the genes with marked interrupted constructs. Since fliM is embedded in the fliLMNOPQR operon, the aphAcassette was used to make a nonpolar fliM mutation. Both mutants were completely nonmotile on soft agar plates, in minimal broth, and in tomato plants. The fliC mutant lacked flagella altogether; moreover, sheared-cell protein preparations from the fliC mutant lacked a 30-kDa band corresponding to flagellin. The fliM mutant was usually aflagellate, but about 10% of cells had abnormal truncated flagella. In a biologically representative soil-soak inoculation virulence assay, both nonmotile mutants were significantly reduced in the ability to cause disease on tomato plants. However, the fliC mutant had wild-type virulence when it was inoculated directly onto cut tomato petioles, an inoculation method that did not require bacteria to enter the intact host from the soil. These results suggest that swimming motility makes its most important contribution to bacterial wilt virulence in the early stages of host plant invasion and colonization.


2009 ◽  
Vol 99 (10) ◽  
pp. 1127-1134 ◽  
Author(s):  
Annett Milling ◽  
Fanhong Meng ◽  
Timothy P. Denny ◽  
Caitilyn Allen

Most strains of the bacterial wilt pathogen Ralstonia solanacearum are tropical, but race 3 biovar 2 (R3bv2) strains can attack plants in temperate zones and tropical highlands. The basis of this distinctive ecological trait is not understood. We compared the survival of tropical, R3bv2, and warm-temperate North American strains of R. solanacearum under different conditions. In water at 4°C, North American strains remained culturable the longest (up to 90 days), whereas tropical strains remained culturable for the shortest time (≈40 days). However, live/dead staining indicated that cells of representative strains remained viable for >160 days. In contrast, inside potato tubers, R3bv2 strain UW551 survived >4 months at 4°C, whereas North American strain K60 and tropical strain GMI1000 were undetectable after <70 days in tubers. GMI1000 and UW551 grew similarly in minimal medium at 20 and 28°C and, although both strains wilted tomato plants rapidly at 28°C, UW551 was much more virulent at 20°C, killing all inoculated plants under conditions where GMI100 killed just over half. Thus, differences among the strains in the absence of a plant host were not predictive of their behavior in planta at cooler temperatures. These data indicate that interaction with plants is required for expression of the temperate epidemiological trait of R3bv2.


1992 ◽  
Vol 38 (9) ◽  
pp. 883-890 ◽  
Author(s):  
Dennis P. Jackson ◽  
Douglas A. Gray ◽  
Vincent L. Morris ◽  
Diane A. Cuppels

The prototrophic Pseudomonas syringae pv. tomato mutant DC3481, which is the result of a single-site Tn5 insertion, cannot grow and cause disease on tomato plants and cannot use the major organic acids of tomato, i.e., citric, malic, succinic, and tartaric acids, as sole carbon sources. Although nonpathogenic, strain DC3481 can still induce a hypersensitive reaction in nonhost plants. We have identified a 30-kb fragment of P. syringae pv. tomato wild-type DNA that can complement this mutant. EcoRI fragments from this region were subcloned and individually subjected to functional complementation analysis. The 3.8-kb fragment, which was the site of the Tn5 insertion, restored pathogenicity and the ability to use all the major organic acids of tomato as carbon sources. It shares sequence homology with several P. syringae pathovars but not other bacterial tomato pathogens. Our results indicate that sequences on the 3.8-kb EcoRI fragment are required for both the ability to grow on tomato leaves (and thus cause disease) and the utilization of carboxylic acids common to tomato. The 3.8-kb fragment may contain a sequence (or sequences) that regulates both traits. Key words: Pseudomonas syringae pv. tomato, phytopathogenicity, Tn5, tricarboxylic acid metabolism, bacterial speck, growth in planta.


2005 ◽  
Vol 18 (12) ◽  
pp. 1296-1305 ◽  
Author(s):  
Huanli Liu ◽  
Shuping Zhang ◽  
Mark A. Schell ◽  
Timothy P. Denny

Ralstonia solanacearum, like many phytopathogenic bacteria, makes multiple extracellular plant cell-wall-degrading enzymes (CWDE), some of which contribute to its ability to cause wilt disease. CWDE and many other proteins are secreted to the milieu via the highly conserved type II protein secretion system (T2SS). R. solanacearum with a defective T2SS is weakly virulent, but it is not known whether this is due to absence of all the CWDE or the loss of other secreted proteins that contribute to disease. These alternatives were investigated by creating mutants of wild-type strain GMI1000 lacking either the T2SS or up to six CWDE and comparing them for virulence on tomato plants. To create unmarked deletions, genomic regions flanking the target gene were polymerase chain reaction (PCR)-amplified, were fused using splice overlap extension PCR, were cloned into a suicide plasmid harboring the sacB counter-selectable marker, and then, were site-specifically introduced into the genome. Various combinations of five deletions (δpehA, δpehB, δpehC, δpme, and δegl) and one inactivated allele (cbhA::aphA-3) resulted in 15 mutants missing one to six CWDE. In soil-drench inoculation assays, virulence of mutants lacking only pectic enzymes (PehA, PehB, PehC, and Pme) was not statistically different from GMI1000, but all the mutants lacking one or both cellulolytic enzymes (Egl or CbhA) wilted plants significantly more slowly than did the wild type. The GMI-6 mutant that lacks all six CWDE was more virulent than the mutant lacking only its two cellulolytic enzymes, and both were significantly more virulent than the T2SS mutant (GMI-D). Very similar results were observed in wounded-petiole inoculation assays, so GMI-6 and GMI-D appear to be less capable of colonizing tomato tissues after invasion. Because the T2SS mutant was much less virulent than the sixfold CWDE mutant, we conclude that other secreted proteins contribute substantially to the ability of R. solanacearum GMI1000 to systemically colonize tomato plants.


2010 ◽  
Vol 23 (8) ◽  
pp. 1042-1052 ◽  
Author(s):  
Jennifer Colburn-Clifford ◽  
Caitilyn Allen

Ralstonia solanacearum race 3 biovar 2 (R3bv2) is an economically important soilborne plant pathogen that causes bacterial wilt disease by infecting host plant roots and colonizing the xylem vessels. Little is known about R3bv2 behavior in the host rhizosphere and early in bacterial wilt pathogenesis. To explore this part of the disease cycle, we used a novel taxis-based promoter-trapping strategy to identify pathogen genes induced in the plant rhizosphere. This screen identified several rex (root exudate expressed) genes whose promoters were upregulated in the presence of tomato root exudates. One rex gene encodes an assembly protein for a high affinity cbb3-type cytochrome c oxidase (cbb3-cco) that enables respiration in low-oxygen conditions in other bacteria. R3bv2 cbb3-cco gene expression increased under low-oxygen conditions, and a cbb3-cco mutant strain grew more slowly in a microaerobic environment (0.5% O2). Although the cco mutant could still wilt tomato plants, symptom onset was significantly delayed relative to the wild-type parent strain. Further, the cco mutant did not colonize host stems or adhere to roots as effectively as wild type. These results suggest that R3bv2 encounters low-oxygen environments during its interactions with host plants and that the pathogen depends on this oxidase to help it succeed in planta.


Sign in / Sign up

Export Citation Format

Share Document