scholarly journals Modulations in Gene Expression and Mapping of Genes Associated with Cyst Nematode Infection of Soybean

2001 ◽  
Vol 14 (1) ◽  
pp. 42-54 ◽  
Author(s):  
Zarir Vaghchhipawala ◽  
Ronald Bassüner ◽  
Kathryn Clayton ◽  
Kimberley Lewers ◽  
Randy Shoemaker ◽  
...  

Infection of the soybean root by the soybean cyst nematode (SCN) (Heterodera glycines Ichinohe) induces a well-documented, yet poorly understood, response by the host plant. The plant response, involving the differentiation of a feeding structure, or “syncytium,” facilitates the feeding and reproduction of the nematode to the detriment of the host. We used a genetic system involving a single dominant soybean gene conferring susceptibility to an inbred nematode strain, VL1, to characterize the nematode-host interaction in susceptible line PI 89008. The restriction fragment length polymorphism marker pB053, shown to map to a major SCN resistance locus, cosegregates with resistance among F2 progeny from the PI 89008 × PI 88287 cross. Cytological examination of the infection process confirmed that syncytium development in this genetic system is similar to that reported by others who used noninbred nematode lines. Our study of infected root tissue in the susceptible line PI 89008 revealed a number of genes enhanced in expression. Among these are catalase, cyclin, elongation factor 1α, β-1,3-endoglucanase, hydroxymethylglutaryl coenzyme A reductase, heat shock protein 70, late embryonic abundant protein 14, and formylglycinamidine ribonucleotide synthase, all of which we have genetically positioned on the public linkage map of soybean. Formylglycinamidine ribonucleotide synthase was found to be tightly linked with a major quantitative trait locus for SCN resistance. Our observations are consistent with the hypothesis proposed by others that feeding site development involves the dramatic modulation of gene expression relative to surrounding root cells.

Genome ◽  
2004 ◽  
Vol 47 (2) ◽  
pp. 404-413 ◽  
Author(s):  
Zarir E Vaghchhipawala ◽  
Jessica A Schlueter ◽  
Randy C Shoemaker ◽  
Sally A Mackenzie

Soybean cyst nematode (SCN) resistance in soybean is a complex oligogenic trait. One of the most important nematode resistance genes, rhg1, has been mapped to a distal region of molecular linkage group G in soybean. A simplified genetic system to identify soybean genes with modified expression in response to SCN led to the identification of several genes within the nematode feeding sites. The genes were mapped to reveal their linkage relationship to known QTLs associated with soybean cyst nematode (SCN) resistance. One candidate, a phosphoribosyl formyl glycinamidine (FGAM) synthase (EC 6.3.5.3) gene, mapped to the same genomic interval as the major SCN resistance gene rhg1 within linkage group G. Isolation of FGAM synthase from a soybean bacterial artificial chromosome (BAC) library revealed two highly homologous paralogs. The genes appeared to be well conserved between bacteria and humans. Promoter analysis of the two soybean homologs was carried out with the Arabidopsis thaliana – Heterodera schachtii system to investigate gene response to nematode feeding. The two promoters and their derived deletion constructions effected green fluorescent protein (GFP) expression within nematode feeding sites. The 1.0-kb promoter sequence immediately adjacent to the translation start site was sufficient to direct expression of GFP within syncytia. A wound-inducible element and a floral organ expression sequence were also identified within these promoters. Although a nematode-responsive element could not be identified, the observed expression of GFP within feeding sites supports the hypothesis that plant gene expression is redirected within feeding sites to benefit the parasite.Key words: FGAM synthase, promoter analysis, syncytium, Heterodera schachtii, soybean cyst nematode.


1998 ◽  
Vol 11 (12) ◽  
pp. 1258-1263 ◽  
Author(s):  
Dieter Hermsmeier ◽  
Mitra Mazarei ◽  
Thomas J. Baum

The marked cellular changes during feeding site formation of the soybean cyst nematode (Heterodera glycines) indicate major changes in soybean gene expression. We used differential display of mRNA to detect host gene expression changes during the early compatible interaction between soybean and H. glycines. Fifteen cDNA clones corresponding to mRNAs with different abundances in H. glycines-infected versus uninfected roots were identified. Differential display results indicated that abundances of five mRNAs increased in infected roots, whereas abundances of 10 mRNAs decreased. Transcripts for nine of these 15 cDNAs could be detected on RNA blots, and their hybridization signals confirmed the differential display results for eight of these nine cDNAs. Sequence analyses identified five cDNAs with decreased mRNA levels in infected roots as corresponding to two putative aldolase genes, a transcription-factor TFIIA homologue, the soybean small GTP-binding protein gene sra1, and the soybean auxin down-regulated gene ADR12. RNA blot analyses of other auxin down-regulated genes revealed a decrease in their mRNA abundances in H. glycines-infected roots as well.


Author(s):  
Katelyn Butler ◽  
Christina Fliege ◽  
Ryan Zapotocny ◽  
Brian Diers ◽  
Mathew Hudson ◽  
...  

Soybean cyst nematode is the most economically damaging pathogen of soybean and host resistance is a core management strategy. The SCN resistance QTL cqSCN-006, introgressed from the wild relative Glycine soja, provides intermediate resistance against nematode populations including those with increased virulence on the heavily used rhg1-b resistance locus. cqSCN-006 was previously fine-mapped to a genome interval on chromosome 15. The present study determined that Glyma.15G191200 at cqSCN-006, encoding a ɣ-SNAP (gamma-SNAP), contributes to SCN resistance. CRISPR/Cas9-mediated disruption of the cqSCN-006 allele reduced SCN resistance in transgenic roots. There are no encoded amino acid polymorphisms between resistant and susceptible alleles. However, other cqSCN-006-specific DNA polymorphisms in the Glyma.15G191200 promoter and gene body were identified, and we observed differing induction of ɣ-SNAP protein abundance at SCN infection sites between resistant and susceptible roots. We identified alternative RNA splice forms transcribed from the Glyma.15G191200 ɣ-SNAP gene and observed differential expression of the splice forms two days after SCN infection. Heterologous overexpression of ɣ-SNAPs in plant leaves caused moderate necrosis, suggesting that careful regulation of this protein is required for cellular homeostasis. Apparently, certain G. soja evolved quantitative SCN resistance through altered regulation of ɣ-SNAP. Previous work has demonstrated SCN resistance impacts of the soybean α-SNAP proteins encoded by Glyma.18G022500 (Rhg1) and Glyma.11G234500. The present study shows that a different type of SNAP protein can also impact SCN resistance. Little is known about ɣ-SNAPs in any system, but the present work suggests a role for ɣ-SNAPs during susceptible responses to cyst nematodes.


2020 ◽  
Vol 80 (03) ◽  
Author(s):  
Ik-Young Choi ◽  
Prakash Basnet ◽  
Hana Yoo ◽  
Neha Samir Roy ◽  
Rahul Vasudeo Ramekar ◽  
...  

Soybean cyst nematode (SCN) is one of the most damaging pest of soybean. Discovery and characterization of the genes involved in SCN resistance are important in soybean breeding. Soluble NSF attachment protein (SNAP) genes are related to SCN resistance in soybean. SNAP genes include five gene families, and 2 haplotypes of exons 6 and 9 of SNAP18 are considered resistant to the SCN. In present study the haplotypes of GmSNAP18 were surveyed and chacterized in a total of 60 diverse soybean genotypes including Korean cultivars, landraces, and wild-types. The target region of exons 6 and 9 in GmSNAP18 region was amplified and sequenced to examine nucleotide variation. Characterization of 5 haplotypes identified in present study for the GmSNAP18 gene revealed two haplotypes as resistant, 1 as susceptible and two as novel. A total of twelve genotypes showed resistant haplotypes, and 45 cultivars were found susceptible. Interestingly, the two novel haplotypes were present in 3 soybean lines. The information provided here about the haplotypic variation of GmSNAP18 gene can be further explored for soybean breeding to develop resistant varieties.


Plant Disease ◽  
2021 ◽  
Author(s):  
Mariola Usovsky ◽  
Robert Robbins ◽  
Juliet Fultz Wilkes ◽  
Devany Crippen ◽  
Vijay Shankar ◽  
...  

Plant parasitic nematodes are a major yield-limiting factor of soybean in the United States and Canada. It has been indicated that soybean cyst nematode (SCN, Heterodera glycines Ichinohe) and reniform nematode (RN, Rotylenchulus reniformis Linford and Oliveira) resistance could be genetically related. For many years fragmentary data has shown this relationship. This report evaluates RN reproduction on 418 plant introductions (PIs) selected from the USDA Soybean Germplasm Collection with reported SCN resistance. The germplasm was divided into two tests of 214 PIs reported as resistant, and 204 PIs moderately resistant to SCN. The defining and reporting of RN resistance changed several times in the last 30 years, causing inconsistencies in RN resistance classification among multiple experiments. Comparison of four RN resistance classification methods was performed: (1) ≤10% as compared to the susceptible check, (2) using normalized reproduction index (RI) values, and transformed data (3) log10 (x) and (4) log10 (x+1), in an optimal univariate k-means clustering analysis. The method of transformed data log10 (x) was selected as the most accurate for classification of RN resistance. Among 418 PIs with reported SCN resistance, the log10 (x) method grouped 59 PIs (15%) as resistant, and 130 PIs (31%) as moderately resistant to RN. Genotyping of a subset of the most resistant PIs to both nematode species revealed their strong correlation with rhg1-a allele. This research identified genotypes with resistance to two nematode species and potential new sources of RN resistance that could be valuable to breeders in developing resistant cultivars.


Nematology ◽  
1999 ◽  
Vol 1 (7) ◽  
pp. 681-686 ◽  
Author(s):  
Georg Waetzig ◽  
Miroslaw Sobczak ◽  
Florian Grundler

AbstractHydrogen peroxide (H2O2) production during the infection of Arabidopsis thaliana by the soybean cyst nematode Heterodera glycines was detected histochemically by the reaction of H2O2 with cerium chloride producing four different patterns of electron-dense precipitates of cerium perhydroxides. As A. thaliana is not a regular host of H. glycines, the defence response is considerable, but does not completely inhibit the development of the nematode. H2O2 was produced not only by cells mechanically damaged during invasion and feeding site induction by the nematode, but also by cells surrounding developing syncytia and cells which were neither in contact with the nematode nor with the syncytium. Die Lokalisation von Peroxid wahrend der Abwehrreaktion von Arabidopsis thaliana gegen den pflanzenparasitaren Nematoden Heterodera glycines - Die Bildung von Wasserstoffperoxid (H2O2) im Rahmen der Infektion von Arabidopsis thaliana durch den Sojabohnen-Zystennematoden Heterodera glycines wurde histochemisch durch die Reaktion von H2O2 mit Cerchlorid nachgewiesen, wobei vier verschiedene Muster elektronendichter Prazipitate von Cerperhydroxiden gebildet wurden. Da A. thaliana kein regularer Wirt von H. glycines ist, kommt es zu einer betrachtlichen Abwehrreaktion, die jedoch die Entwicklung des Nematoden nicht vollstandig verhindert. H2O2 wurde nicht nur von Zellen produziert, die im Laufe des Eindringens und der Induktion des Nahrzellensystems durch den Nematoden mechanisch beschadigt worden waren, sondern auch von Zellen, die sich entwickelnde Syncytien umgaben und von Zellen, die weder mit dem Nematoden noch mit dem Syncytium in Kontakt standen.


2014 ◽  
Vol 14 (3) ◽  
pp. 180-186 ◽  
Author(s):  
Fernanda Abreu Santana ◽  
Martha Freire da Silva ◽  
Julierme Kellen Freitas Guimarães ◽  
Marcia Flores da Silva Ferreira ◽  
Waldir Dias Pereira ◽  
...  

Resistant lines can be identified by marker-assisted selection(MAS), based on alleles of genetic markers linked to the resistance trait. This reduces the number of phenotypically evaluated lines, one of the limitations in the development of cultivars with resistance to soybean cyst nematode (SCN).This study evaluated the efficiency of microsatellites near quantitative traitloci (QTL) for SCN resistance, in the linkage groups (LG) G and A2 of soybean, for the selection of resistant genotypes in populations originated from crosses between the cultivars Vmax and CD201. The QTL of LG A2 was not detected in 'Vmax' (derived from PI 88788). In MAS, the microsatellites of LG G were efficient in selecting F6:7 families with resistance and moderate resistance to SCN race 3. The selection efficiency of the microsatellites Sat_168, Satt309 and Sat_141 was greater than 93%.


2016 ◽  
Vol 113 (47) ◽  
pp. E7375-E7382 ◽  
Author(s):  
Adam M. Bayless ◽  
John M. Smith ◽  
Junqi Song ◽  
Patrick H. McMinn ◽  
Alice Teillet ◽  
...  

α-SNAP [soluble NSF (N-ethylmaleimide–sensitive factor) attachment protein] and NSF proteins are conserved across eukaryotes and sustain cellular vesicle trafficking by mediating disassembly and reuse of SNARE protein complexes, which facilitate fusion of vesicles to target membranes. However, certain haplotypes of the Rhg1 (resistance to Heterodera glycines 1) locus of soybean possess multiple repeat copies of an α-SNAP gene (Glyma.18G022500) that encodes atypical amino acids at a highly conserved functional site. These Rhg1 loci mediate resistance to soybean cyst nematode (SCN; H. glycines), the most economically damaging pathogen of soybeans worldwide. Rhg1 is widely used in agriculture, but the mechanisms of Rhg1 disease resistance have remained unclear. In the present study, we found that the resistance-type Rhg1 α-SNAP is defective in interaction with NSF. Elevated in planta expression of resistance-type Rhg1 α-SNAPs depleted the abundance of SNARE-recycling 20S complexes, disrupted vesicle trafficking, induced elevated abundance of NSF, and caused cytotoxicity. Soybean, due to ancient genome duplication events, carries other loci that encode canonical (wild-type) α-SNAPs. Expression of these α-SNAPs counteracted the cytotoxicity of resistance-type Rhg1 α-SNAPs. For successful growth and reproduction, SCN dramatically reprograms a set of plant root cells and must sustain this sedentary feeding site for 2–4 weeks. Immunoblots and electron microscopy immunolocalization revealed that resistance-type α-SNAPs specifically hyperaccumulate relative to wild-type α-SNAPs at the nematode feeding site, promoting the demise of this biotrophic interface. The paradigm of disease resistance through a dysfunctional variant of an essential gene may be applicable to other plant–pathogen interactions.


Sign in / Sign up

Export Citation Format

Share Document