scholarly journals First Report of Curvularia Leaf Blight on Curcuma wenyujin Caused by Curvularia clavata in China

Plant Disease ◽  
2013 ◽  
Vol 97 (1) ◽  
pp. 138-138 ◽  
Author(s):  
X. Y. Chen ◽  
J. D. Feng ◽  
Z. Su ◽  
C. Sui ◽  
X. Huang

Curcuma wenyujin Y.H. Chen & C. Ling is a traditional Chinese medicinal herb in the Zingiberaceae family. Commonly known as Wen yujin, the root is widely used for alleviating pain and protecting the liver. A severe leaf blight disease was observed in three C. wenyujin farms in Hainan Province of China in October 2010. The obvious symptoms of leaf blight, yellow to brown irregular lesions (1 to 20 cm) on C. wenyujin, usually began at the tips of leaves and the main veins. This disease, especially severe from August to October, caused heavy damage and 100% of mature plants (10 months old) in farms were infected. The disease was most severe when continuous cropping was performed and showed slight improvement when rotation was adopted. Farmers usually sprayed carbendazim (50% WP) and thiophanate-methyl (70% WP) to control this disease, but these treatments were not effective. To isolate the causal pathogen, diseased plants were collected in October 2010 from a field of the Hainan Branch Institute of Medicinal Plant Development in Hainan Province. Lesion tissue was removed from the border between symptomatic and healthy tissue, surface sterilized in 75% ethanol for 1 min, washed in three changes of sterile distilled water, transferred to potato dextrose agar (PDA) plates, and incubated at 28°C for 7 days. Single spore cultures of five isolates were obtained and identified as Curvularia clavata based on morphological characteristics (1). Conidia measured 20 to 29 × 7.5 to 10.5 μm (n = 100), were curved, 3-septate, and the third cell from the base was larger and darker than the others. Mycelia of single spore cultures growing on PDA for 5 days were used for DNA extraction using a plant genomic DNA kit (TIANGEN, Beijing). The internal transcribed spacer (ITS) region of the rDNA was amplified using primers ITS1 and ITS4. The amplicons were 562 bp in length (GenBank Accession No. JQ730852) and had 99% nucleotide identity with the GenBank Accession No. JN021115 and AF071336 of C. clavata. Pathogenicity tests were conducted using fresh and healthy detached Curcuma wenyujin leaves. Mycelial discs (10 mm) removed from a 5-day-old colony on PDA were used for inoculation. Each isolate was inoculated on three distinct leaves (two distinct inoculations per leaf). Three additional leaves inoculated with sterile PDA discs were used as control. Inoculated leaves were covered with a polythene film to maintain high humidity. Leaves in trays were kept in a growth chamber at 28°C and observed for symptom appearance every day. Five days after inoculation, inoculated leaves developed blight symptoms similar to those observed on naturally infected leaves. No symptoms were observed on non-inoculated leaves. C. clavata was reisolated from the inoculated leaves, thus fulfilling Koch's postulates. C. clavata has been previously reported to be economically important on a number of other hosts (2). To our knowledge, this is the first report of Curvularia leaf blight on Curcuma wenyujin caused by C. clavata in China. References: (1) A. M Mandokhot et al. Eur. J. Plant Pathol.78:65, 1972. (2) T. Y. Zhang et al. Flora fungorum sinicorum: Beijing, China, 2010.

Plant Disease ◽  
2021 ◽  
Author(s):  
Jiahao Lai ◽  
Guihong Xiong ◽  
Bing Liu ◽  
Weigang Kuang ◽  
Shuilin Song

Blueberry (Vaccinium virgatum), an economically important small fruit crop, is characterized by its highly nutritive compounds and high content and wide diversity of bioactive compounds (Miller et al. 2019). In September 2020, an unknown leaf blight disease was observed on Rabbiteye blueberry at the Agricultural Science and Technology Park of Jiangxi Agricultural University in Nanchang, China (28°45'51"N, 115°50'52"E). Disease surveys were conducted at that time, the results showed that disease incidence was 90% from a sampled population of 100 plants in the field, and this disease had not been found at other cultivation fields in Nanchang. Leaf blight disease on blueberry caused the leaves to shrivel and curl, or even fall off, which hindered floral bud development and subsequent yield potential. Symptoms of the disease initially appeared as irregular brown spots (1 to 7 mm in diameter) on the leaves, subsequently coalescing to form large irregular taupe lesions (4 to 15 mm in diameter) which became curly. As the disease progressed, irregular grey-brown and blighted lesion ran throughout the leaf lamina from leaf tip to entire leaf sheath and finally caused dieback and even shoot blight. To identify the causal agent, 15 small pieces (5 mm2) of symptomatic leaves were excised from the junction of diseased and healthy tissue, surface-sterilized in 75% ethanol solution for 30 sec and 0.1% mercuric chloride solution for 2 min, rinsed three times with sterile distilled water, and then incubated on potato dextrose agar (PDA) at 28°C for 5-7 days in darkness. Five fungal isolates showing similar morphological characteristics were obtained as pure cultures by single-spore isolation. All fungal colonies on PDA were white with sparse creeping hyphae. Pycnidia were spherical, light brown, and produced numerous conidia. Conidia were 10.60 to 20.12 × 1.98 to 3.11 µm (average 15.27 × 2.52 µm, n = 100), fusiform, sickle-shaped, light brown, without septa. Based on morphological characteristics, the fungal isolates were suspected to be Coniella castaneicola (Cui 2015). To further confirm the identity of this putative pathogen, two representative isolates LGZ2 and LGZ3 were selected for molecular identification. The internal transcribed spacer region (ITS) and large subunit (LSU) were amplified and sequenced using primers ITS1/ITS4 (Peever et al. 2004) and LROR/LR7 (Castlebury and Rossman 2002). The sequences of ITS region (GenBank accession nos. MW672530 and MW856809) showed 100% identity with accessions numbers KF564280 (576/576 bp), MW208111 (544/544 bp), MW208112 (544/544 bp) of C. castaneicola. LSU gene sequences (GenBank accession nos. MW856810 to 11) was 99.85% (1324/1326 bp, 1329/1331 bp) identical to the sequences of C. castaneicola (KY473971, KR232683 to 84). Pathogenicity was tested on three blueberry varieties (‘Rabbiteye’, ‘Double Peak’ and ‘Pink Lemonade’), and four healthy young leaves of a potted blueberry of each variety with and without injury were inoculated with 20 μl suspension of prepared spores (106 conidia/mL) derived from 7-day-old cultures of LGZ2, respectively. In addition, four leaves of each variety with and without injury were sprayed with sterile distilled water as a control, respectively. The experiment was repeated three times, and all plants were incubated in a growth chamber (a 12h light and 12h dark period, 25°C, RH greater than 80%). After 4 days, all the inoculated leaves started showing disease symptoms (large irregular grey-brown lesions) as those observed in the field and there was no difference in severity recorded between the blueberry varieties, whereas the control leaves showed no symptoms. The fungus was reisolated from the inoculated leaves and confirmed as C. castaneicola by morphological and molecular identification, fulfilling Koch’s postulates. To our knowledge, this is the first report of C. castaneicola causing leaf blight on blueberries in China. The discovery of this new disease and the identification of the pathogen will provide useful information for developing effective control strategies, reducing economic losses in blueberry production, and promoting the development of the blueberry industry.


Plant Disease ◽  
2013 ◽  
Vol 97 (1) ◽  
pp. 147-147
Author(s):  
J. H. Park ◽  
S. E. Cho ◽  
K. S. Han ◽  
H. D. Shin

Garlic chives, Allium tuberosum Roth., are widely cultivated in Asia and are the fourth most important Allium crop in Korea. In June 2011, a leaf blight of garlic chives associated with a Septoria spp. was observed on an organic farm in Hongcheon County, Korea. Similar symptoms were also found in fields within Samcheok City and Yangku County of Korea during the 2011 and 2012 seasons. Disease incidence (percentage of plants affected) was 5 to 10% in organic farms surveyed. Diseased voucher specimens (n = 5) were deposited at the Korea University Herbarium (KUS). The disease first appeared as yellowish specks on leaves, expanding to cause a leaf tip dieback. Half of the leaves may be diseased within a week, especially during wet weather. Pycnidia were directly observed in leaf lesions. Pycnidia were amphigenous, but mostly epigenous, scattered, dark brown to rusty brown, globose, embedded in host tissue or partly erumpent, separate, unilocular, 50 to 150 μm in diameter, with ostioles of 20 to 40 μm in diameter. Conidia were acicular, straight to sub-straight, truncate at the base, obtuse at the apex, hyaline, aguttulate, 22 to 44 × 1.8 to 3 μm, mostly 3-septate, occasionally 1- or 2-septate. These morphological characteristics matched those of Septoria allii Moesz, which is differentiated from S. alliacea on conidial dimensions (50 to 60 μm long) (1,2). A monoconidial isolate was cultured on potato dextrose agar (PDA). Two isolates have been deposited in the Korean Agricultural Culture Collection (Accession Nos. KACC46119 and 46688). Genomic DNA was extracted using the DNeasy Plant Mini DNA Extraction Kit (Qiagen Inc., Valencia, CA). The internal transcribed spacer (ITS) region of rDNA was amplified using the ITS1/ITS4 primers and sequenced. The resulting sequence of 482-bp was deposited in GenBank (JX531648 and JX531649). ITS sequence information was at least 99% similar to those of many Septoria species, however no information was available for S. allii. Pathogenicity was tested by spraying leaves of three potted young plants with a conidial suspension (2 × 105 conidia/ml), which was harvested from a 4-week-old culture on PDA. Control leaves were sprayed with sterile water. The plants were placed in humid chambers (relative humidity 100%) for the first 48 h. After 7 days, typical leaf blight symptoms started to develop on the leaves of inoculated plants. S. allii was reisolated from the lesions of inoculated plants, confirming Koch's postulates. No symptoms were observed on control plants. The host-parasite association of A. tuberosum and S. allii has been known only from China (1). S. alliacea has been recorded on several species of Allium, e.g. A. cepa, A. chinense, A. fistulosum, and A. tuberosum from Japan (4) and A. cepa from Korea (3). To the best of our knowledge, this is the first report of S. allii on garlic chives. No diseased plants were observed in commercial fields of garlic chives which involved regular application of fungicides. The disease therefore seems to be limited to organic garlic chive production. References: (1) P. K. Chi et al. Fungous Diseases on Cultivated Plants of Jilin Province, Science Press, Beijing, China, 1966. (2) P. A. Saccardo. Sylloge Fungorum Omnium Hucusque Congnitorum. XXV. Berlin, 1931. (3) The Korean Society of Plant Pathology. List of Plant Diseases in Korea, Suwon, Korea, 2009. (4) The Phytopathological Society of Japan. Common Names of Plant Diseases in Japan, Tokyo, Japan, 2000.


Plant Disease ◽  
2021 ◽  
Author(s):  
Hongsen Cheng ◽  
De Xue Gao ◽  
Huijie Sun ◽  
Yanbin Na ◽  
Jing Xu

Sesame (Sesamum indicum L.) is an important oilseed crop in China and it is also used in food and health products. In August of 2019, a blight sesame fruit was observed in a field of Liaoyang city, Liaoning province of China. Initial disease symptoms consisted of brown or dark brown spots on fruit. With time, lesions coalesced and the whole fruit turned dark brown or black. Most of the diseased fruit had thin and small, deformed, necrotic, hardened cracked epidermal lesions. Lesions were also produced on stem and petioles leading to leaf abscission. The disease results in premature fruit death, and in turn, considerable yield losses. To determine the causal agent, symptomatic fruit with developing lesions were collected, and surface sterilized in 2% NaClO for 3 min, rinsed three times in distilled water, and plated onto PDA medium. After incubation at 25°C for 5 days, a dark olivaceous fungus with abundant, branched, brown to black, and septate hyphae was consistently isolated. Twenty single spores were separated with an inoculation needle under stereomicroscope. The conidia were in chains, brown, obclavate, ovoid or ellipsoid, with 1-6 transverse septa and 0-4 longitudinal or oblique septa 12.5 to 45 × 6.5 to 14.5 μm in size. Conidiophores were septate, light brown to olive brown, measuring 22-60 μm × 2-4 μm. The morphological characteristics of the 20 isolates all matched the description of Alternaria alternata (Simmons, 2007). The internal transcribed spacer (ITS) region of rDNA of 15 isolates was amplified using primers ITS1/ITS4 (White et al. 1990) and EF1-728F/EF1-986R (Carbone et al. 1999) and sequenced. Identical sequences were obtained and the sequence of the isolate ZMHG12 was submitted to GenBank (Accession no. MW418181 and MW700316). BLAST analysis of the sequences of the isolates of ZMHG12 showed 100% to A. alternata (KP739875 and LC132712). In pathogenicity tests, a conidial suspension (2.5 × 105 conidia per ml) was prepared from 7 days-old cultures of isolate ZMHG12 grown on PDA at 25°C. Fruit of 10 two-month-old potted sesame plants (Variety “Liaozhi 8”) were sprayed with the conidia suspension until runoff. Another 10 plants sprayed with distilled water to served as non-inoculated controls. All plants were maintained for 48 h in a humid chamber with a temperature of 25°C to 26°C, and then moved to a greenhouse. Ten days after inoculation, all fruit of inoculated plants exhibited symptoms similar to those observed in the field and non-inoculated control plants remained symptomless. The experiment was repeated twice with similar results. A. alternata has been reported as a pathogen caused leaf blight disease of sesame in Pakistan (Nayyar et al. 2017). To our knowledge, this is the first report of A.alternata causing fruit blight of sesame in China. To date, we have observed the disease on sesames in fields of Fuxin, Chaoyang and Tieling city in Liaoning Province, and Tongliao city in Inner Mongolia of China, and it has become an important disease in sesame production of China. References : Simmons E. G. 2007. Alternaria: An identification manual. CBS Fungal Biodiversity Center, Utrecht, Netherlands. White T. J., et al. 1990. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego. Carbone I., et al. 1999. Mycologia, 91: 553-556. Nayyar, B. G., et al. 2017. Plant Pathology Journal, 33 (6): 543-553.


Plant Disease ◽  
2010 ◽  
Vol 94 (7) ◽  
pp. 916-916 ◽  
Author(s):  
X.-B. Liu ◽  
T. Shi ◽  
C.-P. Li ◽  
J.-M. Cai ◽  
G.-X. Huang

Cassava (Manihot esculenta) is an important economic crop in the tropical area of China. During a survey of diseases in July and September of 2009, leaf spots were observed on cassava plants at three separate plantations in Guangxi (Yunfu and Wuming) and Hainan (Baisha) provinces. Circular or irregular-shaped leaf spots were present on more than one-third of the plants. Spots were dark brown or had white papery centers delimited by dark brown rims and surrounded by a yellow halo. Usually, the main vein or small veinlets adjacent to the spots were dark. Some defoliation of plants was evident at the Wuming location. A fungus was isolated from symptomatic leaves from each of the three locations and designated CCCGX01, CCCGX02, and CCCHN01. Single-spore cultures of these isolates were incubated on potato dextrose agar (PDA) for 7 days with a 12-h light/dark cycle at a temperature of 28 ± 1°C. Conidiophores were straight to slightly curved, unbranched, and pale to light brown. Conidia were formed singly or in chains, obclavate to cylindrical, straight or curved, subhyaline-to-pale olivaceous brown, 19.6 to 150.3 μm long and 5.5 to 10.7 μm wide at the base, with 4 to 13 pseudosepta. Morphological characteristics of the specimen and their conidia were similar to the descriptions for Corynespora cassiicola (2). The isolate CCCGX01 was selected as a representative for molecular identification. Genomic DNA was extracted by the cetyltrimethylammoniumbromide protocol (3) from mycelia and used as a template for amplification of the internal transcribed spacer (ITS) region of rDNA with primer pair ITS1/ITS4. The sequence (GenBank Accession No. GU138988) exactly matched several sequences (e.g., GenBank Accession Nos. FJ852715, EF198117, and AY238606) of C. cassiicola (1). Young, healthy, and fully expanded green leaves of cassava cv. SC205 were surface sterilized. Ten leaves were inoculated with 10-μl drops of 104 ml suspension of conidia and five leaves were inoculated with the same volume of sterile water to serve as controls. After inoculation, leaves were placed in a dew and dark chamber for 36 h at 25°C and subsequently transferred to the light for 5 days. All inoculated leaves with isolates showed symptoms similar to those observed in natural conditions, whereas the controls remained symptom free. The morphological characteristics of reisolated conidia that formed on the diseased parts were identical with the nature isolates. To our knowledge, this is the first report of leaf spot caused by C. cassiicola on cassava in China. References: (1) L. J. Dixon et al. Phytopathology 99:1015, 2009. (2) M. B. Ellis et al. Corynespora cassiicola. No. 303 in: CMI Description of Pathogenic Fungi and Bacteria. Commonwealth Mycological Institute, Kew, UK 1971. (3) J. R. Xu et al. Genetics 143:175, 1996.


Plant Disease ◽  
2010 ◽  
Vol 94 (8) ◽  
pp. 1064-1064 ◽  
Author(s):  
M. Zhang ◽  
H. Y. Wu ◽  
T. Tsukiboshi ◽  
I. Okabe

Hidcote, Hypericum patulum Thunb. ex Murray, is a deciduous shrub that is cultivated as an ornamental in landscape gardens and courtyards in Japan. In early August 2008, severe leaf spotting was observed on plants growing in a courtyard in Nasushiobara, Tochigi, Japan. More than 30% of the leaves on five shrubs exhibited leaf spot symptoms. Small, round, pale brown lesions were initially observed. Later, they expanded to 5 to 12 mm in diameter, round to irregular-shaped with pale brown centers and dark brown margins. Under continuously wet or humid conditions, black acervuli developed on the leaf lesions. Conidia were straight or slightly curved, fusiform to clavate, and five-celled with constrictions at the septa. Conidia ranged from 17 to 21 × 5 to 8 μm with hyaline apical and basal cells. Fifteen percent of apical cells had two and the rest had three appendages (setulae) ranging from 10 to 21 μm long. The basal hyaline cell tapered into a 2 to 4 μm pedicel. The three median cells ranged from light or dark brown to olive green. These morphological characteristics matched those of Pestalotiopsis microspora (Speg.) G.C. Zhao & N. Li (1,2). The identity of the fungus was confirmed by DNA sequencing of the internal transcribed spacer (ITS) region (GenBank Accession No. GU908473) from single-spore isolates, which revealed 100% homology with those of other P. microspora isolates (e.g., GenBank Accession Nos. FJ459950 and DQ456865). Koch's postulates were confirmed using leaves of three detached branches of a field-grown asymptomatic plant of H. patulum. Thirty leaves of each branch were inoculated by placing mycelial plugs obtained from the periphery of 7-day-old single-spore cultures on the leaf surface. Potato dextrose agar plugs without mycelium served as controls. Leaves on branches were covered with plastic bags for 24 h to maintain high relative humidity in a greenhouse (approximately 24 to 28°C). After 5 days, all inoculated leaves showed symptoms identical to those described above, whereas control leaves remained symptom free. Reisolation of the fungus from lesions on inoculated leaves confirmed that the causal agent was P. microspora. To our knowledge, this is the first report of leaf spots on H. patulum caused by P. microspora in Japan. Management options may have to be developed and implemented to protect Hidcote plants in areas where leaf spot cannot be tolerated. References: (1) P. A. Saccardo. Sylloge Fungorum III:789, 1884. (2) G. C. Zhao and N. Li. J. Northeast For. Univ. 23(4):21, 1995.


Plant Disease ◽  
2014 ◽  
Vol 98 (9) ◽  
pp. 1277-1277 ◽  
Author(s):  
A. P. S. Ferreira ◽  
D. B. Pinho ◽  
A. R. Machado ◽  
O. L. Pereira

Pineapple (Ananas comosus L. Merril.) is the main plant of the Bromeliaceae, cultivated economically for the fruits' appealing flavor and a refreshing sugar-acid balance. In 2013, fruits with no initially visible symptoms began to show a postharvest rot after 3 days in a market in the municipality of Viçosa, Minas Gerais, Brazil. The rot can rarely be detected from the outside of the fruit, but a longitudinal section allows observation of extension of the affected area toward the center of the fruit. The symptoms initially appear as a dark brown to black rot on surface of the fruits, which gradually enlarges in size, leading to increased rot and disposal of infected fruits. Until now, this disease occurred sporadically and caused small losses. A fungus was isolated from rot observed in fruits from cultivar Pérola and a single-spore culture was deposited in the culture collection of the Universidade Federal de Viçosa (Accession No. COAD 1588). After 7 days of incubation at 25°C, the strain displayed radial growth and gray-white to black colonies. Microscopic observations revealed brown to light brown conidiophores present singly or in groups. The septate, simple or rarely branched conidiophores are straight or curved, up to 245 μm long and 5 μm wide, and some have a geniculate growth pattern near the apex. The conidia are ellipsoidal or barrel-shaped and 22 to 25 μm long and 10 to 12.5 μm wide. The median septum appears as a black band and the cells at each end of the conidia are pale, whereas the intermediate cells are brown or dark brown. Based on morphological characteristics, the fungus was identified as Curvularia eragrostidis (4). To confirm this identification, DNA was extracted and sequences of the internal transcribed spacer (ITS), 28S and 18S rDNA regions were obtained and deposited in GenBank (Accession Nos. KJ541818 to KJ541820). The sequence of the ITS region exhibited 99% identity over 530 bp with other C. eragrostidis sequence in GenBank (JN943449) and Bayesian inference analysis placed our isolate in the same clade with others C. eragrostidis (study S15670 deposited in TreeBASE). Koch's postulates were conducted by inoculating six fruits of pineapple previously disinfected with 2% sodium hypochlorite and washed in sterile distilled water. For inoculation, the isolate was grown in potato dextrose agar (PDA) for 15 days at 25°C. Six millimeter diameter disks were removed from the surface of fruits with a sterile cork borer and replaced with PDA disks containing mycelia from the margins of the culture. An agar plug was deposited in three control fruits and all fruits were maintained at 25°C in plastic trays. Inoculated fruits showed symptoms 7 days after inoculation that were similar to those initially observed in the infected fruits, while control fruits showed no symptoms. C. eragrostidis is a cosmopolitan pathogen that infects hosts from several botanical families (2,4). In Brazil, this fungus causes leaf spot on A. comosus (3) and also infects Allium sativum, Dioscorea alata, D. cayenensis, Oryza sativa, Sorghum bicolor, Vigna unguiculata, and Zea mays (1). To our knowledge, this is the first report of C. eragrostidis causing postharvest rot disease in pineapple in Brazil. Because invasion of the fungus can occur through minute fractures, fruits should be carefully handled to avoid mechanical damage. References: (1) D. F. Farr and A. Y. Rossman. Fungal Databases. Systematic Mycology and Microbiology Laboratory, ARS, USDA. Retrieved from http://nt.ars-grin.gov/fungaldatabases , 18 February 2014. (2) D. S. Manamgoda et al. Fungal Divers. 51:3, 2011. (3) J. J. Ponte et al. Fitopatologia 10:21, 1975. (4) A. Sivanesan. Mycological Papers 158:113, 1987.


Plant Disease ◽  
2013 ◽  
Vol 97 (9) ◽  
pp. 1254-1254 ◽  
Author(s):  
J. Sun ◽  
D.-M. Wang ◽  
X.-Y. Huang ◽  
Z.-H. Liu

Hazel (Corylus heterophylla Fischl) is an important nut tree grown in China, especially in Liaoning Province, and is rich in nutritional and medicinal values. In August 2011, leaf spotting was observed on hybrid hazel (Dawei) leaves in Paotai Town, Wafangdian County of Liaoning Province. By August 2012, the disease had spread to Zhangdang Town, Fushun County. Symptoms initially appeared on both sides of leaves as pinpoint brown spots, which enlarged and developed into regular, dark brown lesions, 3 to 9 mm in diameter. The lesions were lighter in color in the center compared to the margin. To identify the pathogen, leaf pieces (3 to 5 mm) taken from the margins, including both symptomatic and healthy portions of leaf tissue, were surface-disinfected first in 75% ethanol for 5 s, next in 0.1% aqueous mercuric chloride for 50 s, and then rinsed with sterilized water three times. Leaf pieces were incubated on potato dextrose agar (PDA) at 25°C for 14 days in darkness. Single spore isolates were obtained from individual conidia. For studies of microscopic morphology, isolates were grown on synthetic nutrient agar (SNA) in slide cultures. Colonies grew up to 45 to 48 mm in diameter on PDA after 14 days. Pycnidia appeared on the colonies after 12 days. Conidiophores were short. Pycnidia were dark brown, subglobose, and 150 to 205 μm in diameter. Conidia were unicellular, colorless, ovoid to oval, and from 2.4 to 4.5 × 1.6 to 2.4 μm. On the basis of these morphological characteristics, the isolates were tentatively identified as Phyllosticta coryli Westend (2). The rDNA internal transcribed spacer (ITS) region was amplified using primers ITS1 and ITS4 and sequenced (GenBank Accession No. KC196068). The 490-bp amplicons had 100% identity to an undescribed Phyllosticta species isolated from Cornus macrophylla in Gansu, Tianshui, China (AB470897). On the basis of morphological characteristics and nucleotide homology, the isolate was tentatively identified as P. coryli. Koch's postulates were fulfilled in the growth chamber on hazelnut leaves inoculated with P. coryli conidial suspensions (107 conidia ml–1). Eight inoculated 1-year-old seedlings (Dawei) were incubated under moist conditions for 8 to 10 days at 25°C. All leaf spots that developed on inoculated leaves were similar in appearance to those observed on diseased hazel leaves in the field. P. coryli was recovered from lesions and its identity was confirmed by morphological characteristics. P. coryli was first reported as a pathogen of hazel leaves in Bull of Belgium (2). In China, P. coryli was first reported on Corylus heterophylla Fisch. in Jilin Province (1). To our knowledge, this is the first report of P. coryli causing leaf spot on hybrid hazel in Liaoning Province of China. The outbreak and spread of this disease may decrease the yield of hazelnut in northern regions of China. More studies are needed on control strategies, including the possible resistance of hazel cultivars to P. coryli. References: (1) Y. Li et al. J. Shenyang Agric. Univ. 25:153, 1994. (2) P. A. Saccardo. Sylloge Fungorum Vol. III, page 31, 1884.


Plant Disease ◽  
2014 ◽  
Vol 98 (9) ◽  
pp. 1277-1277 ◽  
Author(s):  
X.-Y. Men ◽  
S.-Y. Liu ◽  
W.-T. Jiang ◽  
Y. Li

Torenia fournieri (Linderniaceae) is a common ornamental plant in China. It is also an important Chinese medicinal herb for its heart clearing and toxin removal properties. In October 2013, severe powdery mildew infections were observed on T. fournieri in Baihuayuan Garden (125.35°E, 43.88°N), China. Voucher specimens were deposited in the Herbarium of Mycology of Jilin Agricultural University under the accession number HMJAU02176. Whitish colonies covered the surface of leaves, petioles, sepals, and stems. The infected leaves became yellow and necrotic by advanced stages of the infection. Chasmothecia with a diameter between 63.5 and 95 μm were present singly or in groups, and bore dark brown mycelioid. The appendages were 0.5 to 4 times as long as the chasmothecial diameter, brown at the base and paler toward the apex. Asci were 2 to 6 per chasmothecium, short-stalked or sessile, 50 to 62 × 30 to 50.5 μm, and 2- to 4-spored. Ascospores were pale brown, oval to ellipsoid, 27 to 43 × 13 to 17 μm. Hyphae were flexuous to straight, branched, and septate. Appressoria were well-developed, lobed, and solitary or in opposite pairs. Conidiophores were unbranched, cylindrical, and 94 to 185 × 9 to 15 μm. Foot-cells were straight, cylindrical, 19 to 40 μm long, and followed by 1 to 3 cells shorter or nearly equal to the foot-cell. Conidia were singly produced, cylindrical or oval, 34 to 44 × 16 to 20 μm, and without distinct fibrosin bodies. Lobed germ tubes were produced at the tip of conidia. The morphological characteristics of sexual and asexual structures were consistent with Erysiphe macleayae (1,2). To confirm the identification, the complete internal transcribed spacer (ITS) region of rDNA of the pathogen was amplified with the primers ITS1/ITS4 and sequenced (3). The resulting 574-bp sequence (KJ600796) showed 100% similarity with E. macleayae (KF856294) and Oidium sp. isolated from Chelidonium majus (HQ286645 to 46) and one base different from M. microcarpa (JQ681217). Koch's postulate was completed by gently pressing a diseased leaf onto three young excised leaves of asymptomatic seedlings. Three non-inoculated leaves were used as controls. Inoculated leaves were incubated in separate petri dishes in a greenhouse at 20 to 25°C. Symptoms developed 5 days after inoculation, whereas the control leaves remained symptomless (voucher specimens HMJAU02176I). The morphology of the fungus on the inoculated leaves was identical to that observed on the originally diseased leaves. Powdery mildew on T. fournieri has only been reported as Golovinomyces sp. in Hungary (4). To our knowledge, this is the first report of powdery mildew caused by E. macleayae on T. fournieri worldwide. Infection of Torenia by E. macleayae, a common powdery mildew on various hosts of the Papaveraceae, is very unusual and unexpected. It demonstrates a wider host range of this species beyond the limits of the Papaveraceae. References: (1) U. Braun and R. T. A. Cook. Taxonomic manual of the Erysiphales (Powdery Mildews), CBS Biodiversity Series 11. CBS, Utrecht, the Netherlands, 2012. (2) M. J. Park et al. Plant Dis. 96:1376, 2012. (3) S. Takamatsu et al. Mycol. Res. 113:117, 2009. (4) P. Vági et al. Eur. J. Plant Pathol. 117:89, 2007.


Plant Disease ◽  
2013 ◽  
Vol 97 (4) ◽  
pp. 560-560 ◽  
Author(s):  
H. F. Shen ◽  
B. R. Lin ◽  
J. X. Zhan ◽  
X. M. Pu

Pineapple (Ananas comosus) is an economically important tropical fruit in Hainan Province, China. During September to November 2011, heart rot disese of pineapple was found in Ledong and Wangning of Hainan Province. A survey of 150 ha producing areas of pineapple revealed that the fields were affected at an incidence ranging from 25% to 30%. Infected plants showed water-soaked lesions and soft rot on the base of heart leaves near the soil surface. Heart leaves of infected plants were easily pulled out. As the disease progressed, plants collapsed and died. Diseased tissue fragments (2 × 2 mm) were surface-disinfected for 10 min with 0.3% NaClO, then rinsed three times in sterile water, and plated to 10% V8 juice agar (4). Inoculated dishes were incubated at 26°C in the dark. After 5 days, Phytophthora (identified by the presence of coenocytic hyphae and papillate sporangia) were isolated from the tissue cultures, which has aseptate hyphae. Sporangia were papillate, noncaducous, oval or spherical, and 34.5 to 58.2 μm. Clamydospores, both terminal and intercalary, were also spherical, and were 23.4 to 34.0 μm (2). The ITS region of rDNA was amplified using primers ITS4/ITS5, and the 927-bp product of the ITS showed 99% sequence identity to Phytophthora nicotianae (GenBank Accession No. JF792540), and the sequence was accessed to NCBI (JX978446). Pathogenicity tests were confirmed by irrigating the wounded stem bases of 10 2-month-old pineapple plants with 50 ml of P. nicotionae zoospore solution (15,000 zoospores/ml), and another 10 plants of the same cultivar inoculated with sterile water served as controls. Plants were placed in pots in a greenhouse at 28°C and 90% relative humidity. After 9 days, soft rot was observed clearly on the base of heart leaves of all 10 inoculated plants, while the control plants appeared normal. P. nicotianae was reisolated from the infected pineapple plants, and confirmed to be the same as the inoculated pathogen by conducting a ITS rDNA sequence comparison and morphological characteristics. P. nicotianae was previously reported as the causal agent of heart rot of pineapple in Hawaii, U.S.A. (3) and Guangdong Province of China (1). To our knowledge, this is the first report of P. nicotianae on pineapple in Hainan Province, China. References: (1) J. Z. Chen et al. J. Yunnan Agric. Univ. 8:134, 2003. (2) H. H. Ho. Mycologia 73:705, 1981.(3) K. W. Howard et al. Plant Dis. Rep. 48:848, 1964. (4) X. B. Zheng. Page 81 in: Phytophthora and its Research Technology. China Agricultural Press, Beijing, 1997.


Plant Disease ◽  
2013 ◽  
Vol 97 (10) ◽  
pp. 1383-1383 ◽  
Author(s):  
Q. L. Li ◽  
J. Y. Mo ◽  
S. P. Huang ◽  
T. X. Guo ◽  
Z. B. Pan ◽  
...  

Lobelia chinensis is a perennial herbaceous plant in the family Campanulaceae that is native to China, where it grows well in moist to wet soils. It is commonly used as a Chinese herbal medicine. In May 2012, symptoms of leaf spot were observed on leaves of L. chinensis in Nanning, Guangxi Zhuang Autonomous Region, China. The leaf lesions began as small, water-soaked, pale greenish to grayish spots, which enlarged to gray to pale yellowish spots, 4 to 6 mm in diameter. At later stages, numerous acervuli appeared on the lesions. Acervuli were mostly epiphyllous, and 40 to 196 μm in diameter. On potato dextrose agar (PDA), a fungus was consistently recovered from symptomatic leaf samples, with a 93% isolation rate from 60 leaf pieces that were surface sterilized in 75% ethanol for 30 s and then in 0.1% mercuric chloride for 45 s. Three single-spore isolates were used to evaluate cultural and morphological characteristics of the pathogen. Setae were two to three septate, dark brown at the base, acicular, and up to 90 μm long. Conidia were long oblong-elliptical, guttulate, hyaline, and 11 to 20 × 4.1 to 6.3 μm (mean 15.2 × 5.1 μm). These morphological characteristics of the fungus were consistent with the description of Colletotrichum magna (teleomorph Glomerella magna Jenkins & Winstead) (1). The rDNA internal transcribed spacer (ITS) region of one isolate, LC-1, was sequenced (GenBank Accession No. KC815123), and it showed 100% identity to G. magna, GenBank HM163187.1, an isolate from Brazil cultured from papaya (2). Although KC815123 was identified as G. magna, it shows 99% identity to GenBank sequences from isolates of C. magna, and more research is needed to elucidate the relationships between these taxa, especially with consideration to host specificity. Pathogenicity tests were performed with each of the three isolates by spraying conidial suspensions (1 × 106 conidia/ml) containing 0.1% Tween 20 onto the surfaces of leaves of 30-day-old and 6- to 8-cm-high plants. For each isolate, 30 leaves from five replicate plants were treated. Control plants were treated with sterilized water containing 0.1% Tween 20. All plants were incubated for 36 h at 25°C and 90% relative humidity in an artificial climate chamber, and then moved into a greenhouse. Seven days after inoculation, gray spots typical of field symptoms were observed on all inoculated leaves, but no symptoms were seen on water-treated control plants. Koch's postulates were fulfilled by reisolation of G. magna from diseased leaves. To our knowledge, this is the first report of G. magna infecting L. chinensis worldwide. References: (1) M. Z. Du et al. Mycologia 97:641, 2005. (2) R. J. Nascimento et al. Plant Dis. 94:1506, 2010.


Sign in / Sign up

Export Citation Format

Share Document