Baseline Sensitivity of Alternaria alternata and A. arborescens to Natamycin and Control of Alternaria Rot on Stored Mandarin Fruit

Plant Disease ◽  
2021 ◽  
Author(s):  
Fei Wang ◽  
Seiya Saito ◽  
Themis Michailides ◽  
Chang-Lin Xiao

Alternaria rot caused by Alternaria alternata and A. arborescens is one of the major postharvest diseases on mandarin fruit in California. In this study, natamycin, a newly registered biofungicide, was evaluated for its potential as a postharvest treatment to control Alternaria rot on mandarin fruit. The baseline sensitivities of A. alternata and A. arborescens to natamycin were determined. EC50 values of natamycin for 70 A. alternata isolates ranged from 0.694 to 1.275 µg/ml (mean = 0.921 µg/ml) in a conidial germination assay, and from 2.001 to 3.788 µg/ml (mean = 2.797 µg/ml) for 40 A. alternata isolates in a mycelial growth assay. EC50 values of natamycin for 30 A. arborescens isolates ranged from 0.698 to 1.203 µg/ml (mean = 0.923 µg/ml) in a conidial germination assay, and from 2.035 to 3.368 µg/ml (mean = 2.658 µg/ml) for 20 A. arborescens isolates in a mycelial growth assay. Control tests on detached mandarin fruit showed that natamycin at both low (460 µg/ml) and high recommended rates (920 µg/ml) significantly reduced disease incidence and severity on mandarin fruit inoculated with Alternaria isolates, regardless of species. High rate of natamycin significantly reduced disease incidence and severity compared to the non-treated control even when natamycin treatment was delayed for 6, 12, and 18 hours after inoculation. Our results suggested that natamycin can be an effective postharvest fungicide for control of Alternaria rot on mandarin fruit.

Plant Disease ◽  
2019 ◽  
Vol 103 (7) ◽  
pp. 1613-1620 ◽  
Author(s):  
Xue-ping Huang ◽  
Jian Luo ◽  
Yu-fei Song ◽  
Bei-xing Li ◽  
Wei Mu ◽  
...  

Sclerotinia sclerotiorum, which can cause Sclerotinia stem rot, is a prevalent plant pathogen. This study aims to evaluate the application potential of benzovindiflupyr, a new generation of succinate dehydrogenase inhibitor (SDHI), against S. sclerotiorum. In our study, 181 isolates collected from different crops (including eggplant [n = 34], cucumber [n = 27], tomato [n = 29], pepper [n = 35], pumpkin [n = 32], and kidney bean [n = 25]) in China were used to establish baseline sensitivity to benzovindiflupyr. The frequency distribution of the 50% effective concentration (EC50) values of benzovindiflupyr was a unimodal curve, with mean EC50 values of 0.0260 ± 0.011 μg/ml, and no significant differences in mean EC50 existed among the various crops (P > 0.99). Benzovindiflupyr can effectively inhibit mycelial growth, sclerotial production, sclerotial shape, and myceliogenic and carpogenic germination of the sclerotia of S. sclerotiorum. In addition, benzovindiflupyr showed good systemic translocation in eggplant. Using benzovindiflupyr at 100 μg/ml yielded efficacies of 71.3 and 80.5% for transverse activity and cross-layer activity, respectively, which were higher than those of acropetal and basipetal treatments (43.6 and 44.7%, respectively). Greenhouse experiments were then carried out at two experimental sites for verification. Applying benzovindiflupyr at 200 g a.i. ha−1 significantly reduced the disease incidence and severity of Sclerotinia stem rot. Overall, the results demonstrated that benzovindiflupyr is a potential alternative product to control Sclerotinia stem rot.


Plant Disease ◽  
2011 ◽  
Vol 95 (9) ◽  
pp. 1075-1079 ◽  
Author(s):  
C. L. Xiao ◽  
Y. K. Kim ◽  
R. J. Boal

Sphaeropsis rot caused by Sphaeropsis pyriputrescens is a recently reported postharvest fruit rot disease of apple grown in Washington State. The objective of this study was to develop chemical-based mitigation measures for Sphaeropsis rot in stored apple fruit. To determine in vitro sensitivity of S. pyriputrescens to the three registered postharvest fungicides thiabendazole, fludioxonil, and pyrimethanil, 30 isolates of S. pyriputrescens obtained from various sources were tested for mycelial growth and conidial germination on fungicide-amended media. Golden Delicious apple fruit were inoculated with the pathogen in the orchard at 2 or 5 weeks before harvest. After harvest, fruit were either nontreated or dipped in thiabendazole, fludioxonil, or pyrimethanil solutions, stored at 0°C, and monitored for decay development for up to 9 months after harvest. The mean effective concentration of a fungicide that inhibits mycelial growth or spore germination by 50% relative to the nonamended control (EC50) values of thiabendazole, fludioxonil, and pyrimethanil on mycelial growth were 0.791, 0.0005, and 2.829 μg/ml, respectively. Fludioxonil and pyrimethanil also were effective in inhibiting conidial germination of the fungus with EC50 values of 0.02 μg/ml for fludioxonil and 5.626 μg/ml for pyrimethanil. All three postharvest fungicides applied at label rates immediately after harvest were equally effective in controlling Sphaeropsis rot in stored apple fruit, reducing disease incidence by 92 to 100% compared with the nontreated control. The results indicated that Sphaeropsis rot may be effectively controlled by the currently registered postharvest fungicides thiabendazole, fludioxonil, and pyrimethanil.


Plant Disease ◽  
2015 ◽  
Vol 99 (2) ◽  
pp. 231-239 ◽  
Author(s):  
Byron Vega ◽  
Megan M. Dewdney

Boscalid, a succinate dehydrogenase inhibitor (SDHI), was registered in 2011 to control Alternaria brown spot (ABS) of citrus, caused by Alternaria alternata. In this study, the effect of boscalid on mycelial growth, conidial germination, and resazurin reduction was established in a subset of 16 sensitive isolates using three different media. Conidial germination and mycelial growth inhibition were not suppressed even at higher concentrations of boscalid, although effective concentration to inhibit 50% growth (EC50) values were established with each method. Resazurin reduction produced the lowest EC50 values and was selected for further sensitivity tests. In total, 419 isolates, never exposed to boscalid and collected from Florida tangerine orchards between 1996 to 2012, were tested for boscalid sensitivity. The sensitivity distribution was a unimodal curve with a mean EC50 value of 0.60 μg/ml and a range of 0.07 to 5.84 μg/ml. The molecular characterization of the succinate dehydrogenase (SDH) genes were also determined in a subset of 15 isolates, exhibiting great variability in boscalid sensitivity, by cloning and sequencing the sdhB, sdhC, and sdhD genes. Sequence comparisons of the SDH complex revealed the presence of mutations in 14 of 15 isolates. In total, 21 mutations were identified. Double and multiple mutations were observed in SDHC and SDHD, respectively. In SDHB, 4 mutations were observed while, in SDHC and SDHD, 5 and 12 mutations were detected, respectively. No mutations were found in the highly conserved histidine residues at positions 277 in SDHB, 134 in SDHC, and 133 in SDHD, typically observed in SDHI-resistant isolates. Our findings suggest that A. alternata populations from Florida are sensitive to boscalid and it could be used in ABS spray programs. Boscalid resistance is currently not a problem, although further monitoring for resistance is advisable.


Plant Disease ◽  
2014 ◽  
Vol 98 (6) ◽  
pp. 780-789 ◽  
Author(s):  
Martha Hincapie ◽  
Nan-Yi Wang ◽  
Natalia A. Peres ◽  
Megan M. Dewdney

Citrus black spot (CBS), caused by Guignardia citricarpa, is an emerging disease in Florida. Fungicide applications are the main control measure worldwide. The in vitro activity and baseline sensitivity of G. citricarpa isolates to quinone outside inhibitor (QoI) fungicides (azoxystrobin and pyraclostrobin) were evaluated. The effective concentration needed to reduce mycelial growth or spore germination by 50% (EC50) was determined for 86 isolates obtained from Florida counties where CBS is found. The effect of salicylhydroxamic acid (SHAM) plus azoxystrobin and pyraclostrobin was also assessed for mycelial growth and conidial germination. The mean EC50 for mycelial growth for azoxystrobin was 0.027 μg/ml and that for pyraclostrobin was significantly lower at 0.007 μg/ml (P < 0.0001). Similarly, the mean EC50 for conidial germination for azoxystrobin was 0.016 μg/ml and that for pyraclostrobin was significantly lower at 0.008 μg/ml (P < 0.0001). There was no effect of SHAM on inhibition of mycelial growth or conidial germination by the QoI fungicides but SHAM slightly affected mycelium inhibition by pyraclostrobin. Cytochrome b was partially sequenced and three group 1 introns were found. One intron was immediately post G143, likely inhibiting resistance-conferring mutations at that site. It is surmised that the QoI resistance risk is low in the Florida G. citricarpa population.


Plant Disease ◽  
2021 ◽  
Author(s):  
Fei Wang ◽  
Seiya Saito ◽  
Themis Michailides ◽  
Chang-Lin Xiao

Alternaria rot caused by Alternaria alternata is one of the major postharvest diseases affecting blueberries in California. The sensitivity profiles of A. alternata from blueberry field to quinone outside inhibitors (QoIs), boscalid, fluopyram, fludioxonil, cyprodinil and polyoxin D in California were examined in this study. EC50 values of 51 A. alternata isolates for boscalid varied greatly among the isolates, ranging from 0.265 to >100 µg/ml. EC50 values of 51 A. alternata isolates to fluopyram, fludioxonil, cyprodinil, and polyoxin D were 5.188 ± 7.118 µg/ml, 0.078 ± 0.021 µg/ml, 0.465 ± 0.302 µg/ml, and 6.238 ± 7.352 µg/ml, respectively. In total, 143 isolates were screened for resistance at 5 and 10 µg/ml for fludioxonil, cyprodinil, and fluopyram, 10 µg/ml for polyoxin D, and 10 and 50 µg/ml for boscalid. Based on the published discriminatory concentrations for phenotyping resistance, of the 143 isolates, all were considered resistant to boscalid; 32, 69 and 42 were sensitive, low resistant, and resistant to fluopyram, respectively; and all were sensitive to fludioxonil and cyprodinil. In a PCR-RFLP method for phenotyping, 60 out of the 143 isolates were classified as resistant to QoIs. Control tests on detached blueberry fruit inoculated with different Alternaria isolates showed that fludioxonil and cyprodinil significantly reduced disease incidence and severity; however, pyraclostrobin, boscalid, fluopyram and polyoxin D significantly reduced only disease severity. The obtained results will be helpful in making decisions on fungicide programs to control A. alternata isolates with resistance or reduced sensitivities to multiple fungicides.


Plant Disease ◽  
2010 ◽  
Vol 94 (5) ◽  
pp. 604-612 ◽  
Author(s):  
Y. K. Kim ◽  
C. L. Xiao

Gray mold caused by Botrytis cinerea is a major postharvest disease of apple. Pristine, a formulated mixture of pyraclostrobin and boscalid, was recently registered for use on apple. Pristine applied within 2 weeks before harvest is effective in controlling gray mold in stored apple fruit. To determine the baseline sensitivity of B. cinerea populations to these fungicides, 40 isolates from organic and 80 from conventional apple orchards where Pristine had not been used were tested for mycelial growth or conidial germination on fungicide-amended media. To monitor fungicide resistance, gray-mold-decayed apple fruit originating from orchards in which Pristine had been used were sampled from a fruit packinghouse. Isolates of B. cinerea recovered from the fruit were tested for resistance to the two fungicides. In the in vivo study in the orchards, Pristine was applied to fruit 1 day before harvest. Fruit were then harvested, wounded, and inoculated with isolates exhibiting different fungicide-resistance phenotypes. Fruit were stored at 0°C for 8 weeks for decay development. The effective concentration that inhibits mycelial growth by 50% relative to the control (EC50) values for sensitive isolates ranged from 0.008 to 0.132 μg/ml (mean = 0.043, n = 116) for pyraclostrobin and from 0.003 to 0.183 μg/ml (mean = 0.075, n = 117) for Pristine in a mycelial growth assay on potato dextrose agar. The EC50 values of boscalid for sensitive isolates ranged from 0.065 to 1.538 μg/ml (mean = 0.631, n = 29) in a conidial germination assay on water agar. Four isolates were resistant to pyraclostrobin, with resistance factors (RFs) ranging from 12 to 4,193. Of the four pyraclostrobin-resistant isolates, one also was resistant to boscalid (RF = 14) and Pristine (RF = 373), and two exhibited reduced sensitivity to Pristine (RF = 16 and 17). The minimum inhibitory concentration for conidial germination (for boscalid) or mycelial growth (for pyraclostrobin and Pristine) of sensitive isolates was 5 μg/ml, which is thus recommended as a discriminatory concentration for phenotyping isolates for resistance to these fungicides. Of the 56 isolates obtained from decayed apple fruit that had been exposed to Pristine, 11 (approximately 20%) were resistant to both pyraclostrobin and boscalid and 1 was resistant only to pyraclostrobin. Of the additional 43 isolates obtained from decayed apple fruit originating from an organic orchard, 3 were resistant only to pyraclostrobin, 2 were resistant only to boscalid, and 2 were resistant to both fungicides. It appeared that there was no cross resistance between pyraclostrobin and boscalid because of the existence of isolates resistant only to either pyraclostrobin or boscalid. Pristine applied at label rate in the orchard failed to control gray mold on apple fruit inoculated with the Pristine-resistant isolates. This is the first report of multiple resistance to pyraclostrobin, boscalid, and Pristine in field populations of B. cinerea. Our results suggest that the development of dual resistance to pyraclostrobin and boscalid in B. cinerea populations could result in the failure to control gray mold with Pristine.


2006 ◽  
Vol 87 (1) ◽  
pp. 9-15
Author(s):  
Ricardo Ceballos ◽  
Graciela Palma ◽  
Fernando Perich ◽  
Fernando Pardo ◽  
Andrés Quiroz

Abstract Root rot caused by Fusarium oxysporum is a disease that reduces red clover persistence. Agronomical management of red clover includes MCPA application, and there is no information regarding the effects of this herbicide on the disease. MCPA was evaluated for its effects on F. oxysporum root rot and red clover (Trifolium pratense) growth in a greenhouse experiment. Additionally, in vitro mycelial growth and conidial germination of F. oxysporum were studied. For shoot dry weight and crown diameter of seedlings, the interaction of herbicide and inoculum was significant at 30 d. The herbicide–inoculum treatment reduced shoot dry weight by 20% at 1X rate and by 24% at 2X rate, and crown diameter was reduced by 10% at the high rate. The MCPA treatment caused a 40% reduction of root dry weight by the end of the experiment. Application of MCPA caused fusarium root rot to increase in severity on red clover seedlings and caused phytotoxicity at the high rate. Interaction with the other growth parameters was not significant, indicating that the effects of herbicide and inoculum were independent. Conidial germination and mycelial growth in vitro were reduced by MCPA. Results suggest that red clover growth could be negatively affected by F. oxysporum after MCPA application and that root rot severity increases at high rates of MCPA.


Plant Disease ◽  
2008 ◽  
Vol 92 (10) ◽  
pp. 1427-1431 ◽  
Author(s):  
C. K. Myresiotis ◽  
G. A. Bardas ◽  
G. S. Karaoglanidis

Fifty-five isolates of Botrytis cinerea collected from vegetable crops were used to determine the pathogen's baseline sensitivity to two new fungicides: boscalid, which inhibits the enzyme succinate dehydrogenase in the electron transport chain, and pyraclostrobin, which blocks electron transport between cytochrome b and cytochrome c1. Measurement of sensitivity to boscalid was based on both inhibition of mycelial growth and spore germination, while measurement of sensitivity to pyraclostrobin was based only on inhibition of spore germination. For both fungicides, the sensitivity distribution was a unimodal curve, with a mean EC50 value (effective concentration that reduces mycelial growth or spore germination by 50%) of 0.033 μg ml-1 for pyraclostrobin and 2.09 and 2.14 μg ml-1 for boscalid based on the inhibition of mycelial growth and spore germination, respectively. No cross-sensitivity relationship was observed between the two fungicides (r = 0.09). In addition, no cross-resistance relationship was observed between these two fungicides with other botryticides: cyprodinil, pyrimethanil, fenhexamid, fludioxonil, and iprodione. Moreover, the control efficacy of the two fungicides was tested against two anilinopyrimidine-resistant and two benzimidazole-resistant isolates, and two of wild-type sensitivity. Both pyraclostrobin and boscalid provided satisfactory control of all six isolates that was independent of the isolate sensitivity to benzimidazoles and anilinopyrimidines. In contrast, carbendazim failed to control sufficiently the benzimidazole-resistant isolates, while cyprodinil failed to provide satisfactory control of the anilinopyrimidine-resistant isolates.


2017 ◽  
Vol 9 (1) ◽  
pp. 156-161 ◽  
Author(s):  
Adesh Kumar ◽  
Tanjeet Singh Chahal ◽  
Mandeep Hunjan Singh Singh ◽  
Harminder Kaur ◽  
Roomi Rawal

Alternaria black spot of pomegranate caused by Alternaria alternata pose significant economic losses in India as it reduce the crop yield. Farm survey was undertaken at Punjab Agricultural University, Pomegranate Research Block, Fruit Research Station, Jallowal- Lesriwal Jalandhar during 2015. Among all the five cultivars highest disease incidence (70%) and severity (30%) was registered in cultivar Bhagwa. Twenty two isolates of A. alternata were recovered from infected fruits and clustered using UPGMA (unweighted pair group method with arithmetic averages) on the basis of disease score produced in five cultivars (Ganesh, Ruby, Bhagwa, Jyoti and Mridula). It was revealed that five isolates namely AL14, AL15, AL20, AL21 and AL22 were highly virulent on almost all the pomegranate cultivars. Two cultivars viz. Bhagwa and Mridula were found to be most susceptible as 45.45 % isolates were found to be highly virulent on them.Thein vitro antifungal effects of the six fungicides on mycelial growth were investigated. Based on the inhibition of mycelial growth, all the fungicides showed most toxic reaction with 50% effective concentrations (EC50) of < 1 ppm. However, they varied in EC90 values. 10 ppm cocentration of Tilt (azole group) showed 90% effective concentration (EC90). Folicur also showed approximately same results as Tilt while EC90 value of Natio and SAAF was <25 ppm and > 20 ppm. However, two fungicides namely Dithane Z-78 and Bavistin showed less toxicity against Alternaria alternata as compared to other with EC90 value at concentrations <50 ppm and > 25 ppm. Azole group fungicides (Tilt and Folicur) were found most effective to inhibit the pathogen growth.


Sign in / Sign up

Export Citation Format

Share Document