scholarly journals First Report of Cabbage Head Rot Caused by Fusarium avenaceum in Poland

Plant Disease ◽  
2014 ◽  
Vol 98 (12) ◽  
pp. 1741-1741 ◽  
Author(s):  
J. Robak ◽  
A. Czubatka ◽  
A. Czajka ◽  
U. Smolinska

Cabbage (Brassica oleracea L. var. capitata L.) is an important crop in Poland. Symptoms of a disease affecting cabbage were observed in 2012 and 2013 both in mid-August during the growing season and during storage in January and February. The disease affected about 30 to 40% of crops grown on ~9,000 ha over three locations: Charsznica in south Poland and Bedlno and Skierniewice in central Poland. Circular, watery lesions ranging from 10 to 60 mm in diameter on the surface of affected cabbage heads included whitish aerial mycelium that developed orange sporodochia in the center of each lesion. After 2 to 3 weeks, infection covered each entire cabbage head. A fungal pathogen was isolated from the orange lesions and from infected internal tissue. After sterilization of the excised tissue in 70% ethanol, the sections were each rinsed twice with sterilized water, dried on sterilized filter paper, and plated onto potato dextrose agar (PDA). Isolations consistently yielded morphologically homogeneous fungal colonies with abundant aerial mycelium that ranged from yellow to brownish yellow. The fungus produced pigmentation that changed the agar medium from dark yellow to brownish-burgundy. The mean colony growth was 66 mm after 7 days at 25°C. The fungus formed macroconidia, but microconidia and chlamydospores were not observed. Macroconidia were slender, slightly falcate, usually 3- to 5-septate, 44.7 to 60.7 × 3.7 to 5.5 μm, and formed in abundant orange sporodochia. On PDA, the isolates lost the ability to form sporodochia. Morphological and cultural features were typical of those of F. avenaceum (Fries) Saccardo (2). Koch's postulates were conducted to establish pathogenicity of each of four of the isolates on cabbage heads of the cv. Jaguar F1 (Bejo Seeds, Poland). The outer leaf of each head was inoculated with an 8-mm-diameter PDA plug colonized by the appropriate isolate (four cabbage heads/isolate), and the heads stored in a growth chamber at 25°C. After 5 to 7 days, lesions similar to those observed on naturally infested cabbage were observed on all the inoculated cabbage leaves. Four cabbage heads treated similarly with water as a control treatment remained symptomless. The experiment was repeated. DNA extracted from two of the four isolates was subjected to a PCR assay with primers ITS5 and ITS4 (4) for species identification based on the ITS1 and ITS2 sequences of ribosomal DNA (rDNA). The two sequences differed by 1 bp in the ITS2 region and had 100% identity with ITS sequences of F. avenaceum Accession Nos. AY147283 and AY147285 in GenBank. The sequences were deposited in GenBank as KM189440 and KM189441. Descriptions of fusarium head rot of cabbage in the United States (1) and Canada (3) were consistent with these observations in Poland. To our knowledge, this is the first report of F. avenaceum causing head rot of cabbage in Poland and in Europe. References: (1) H. R. Dillard and A. C. Cobb. Phytopathology 96:30. 2006. (2) J. F. Leslie and B. A. Summerell. Page 132 in: The Fusarium Laboratory Manual, Blackwell Publishing, Hoboken, NJ, 2006. (3) R. D. Peters et al. HortSci. 42:737. 2007. (4) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, 1990.

Plant Disease ◽  
2014 ◽  
Vol 98 (9) ◽  
pp. 1271-1271 ◽  
Author(s):  
F. Baysal-Gurel ◽  
N. Subedi ◽  
D. P. Mamiro ◽  
S. A. Miller

Dry bulb onion (Allium cepa L. cvs. Pulsar, Bradley, and Livingston) plants with symptoms of anthracnose were observed in three commercial fields totaling 76.5 ha in Huron Co., Ohio, in July 2013. Symptoms were oval leaf lesions and yellowing, curling, twisting, chlorosis, and death of leaves. Nearly half of the plants in a 32.8-ha field of the cv. Pulsar were symptomatic. Concentric rings of acervuli with salmon-colored conidial masses were observed in the lesions. Conidia were straight with tapered ends and 16 to 23 × 3 to 6 μm (2). Colletotrichum coccodes (Wallr.) S. Hughes was regularly isolated from infected plants (2). Culturing diseased leaf tissue on potato dextrose agar (PDA) amended with 30 ppm rifampicin and 100 ppm ampicillin at room temperature yielded white aerial mycelia and salmon-colored conidial masses in acervuli. Numerous spherical, black microsclerotia were produced on the surface of colonies after 10 to 14 days. To confirm pathogen identity, total DNA was extracted directly from a 7-day-old culture of isolate SAM30-13 grown on PDA, using the Wizard SV Genomic DNA Purification System (Promega, Madison, WI) following the manufacturer's instructions. The ribosomal DNA internal transcribed spacer (ITS) region was amplified by PCR using the primer pair ITS1 and ITS4 (2), and sequenced. The sequence, deposited in GenBank (KF894404), was 99% identical to that of a C. coccodes isolate from Michigan (JQ682644) (1). Ten onion seedlings cv. Ebenezer White at the two- to three-leaf stage of growth were spray-inoculated with a conidial suspension (1 × 105 conidia/ml containing 0.01% Tween 20, with 10 ml applied/plant). Plants were maintained in a greenhouse (21 to 23°C) until symptoms appeared. Control plants were sprayed with sterilized water containing 0.01% Tween 20, and maintained in the same environment. After 30 days, sunken, oval lesions each with a salmon-colored center developed on the inoculated plants, and microscopic examination revealed the same pathogen morphology as the original isolates. C. coccodes was re-isolated consistently from leaf lesions. All non-inoculated control plants remained disease-free, and C. coccodes was not re-isolated from leaves of control plants. C. coccodes was reported infecting onions in the United States for the first time in Michigan in 2012 (1). This is the first report of anthracnose of onion caused by C. coccodes in Ohio. Unusually wet, warm conditions in Ohio in 2013 likely contributed to the outbreak of this disease. Timely fungicide applications will be necessary to manage this disease in affected areas. References: (1) A. K. Lees and A. J. Hilton. Plant Pathol. 52:3. 2003. (2) L. M. Rodriguez-Salamanca et al. Plant Dis. 96:769. 2012. (3) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, CA, 1990.


Plant Disease ◽  
2014 ◽  
Vol 98 (3) ◽  
pp. 420-420 ◽  
Author(s):  
S. Chebil ◽  
R. Fersi ◽  
A. Yakoub ◽  
S. Chenenaoui ◽  
M. Chattaoui ◽  
...  

In 2011, common symptoms of grapevine dieback were frequently observed in 2- to 5-year-old table grape (Vitis vinifera L.) cvs. in four vineyards located in northern Tunisia. The symptoms included dead spur and cordons, shoot dieback, and sunken necrotic bark lesions, which progressed into the trunk resulting in the death of large sections of the vine. Longitudinal and transversal sections of cordons and spurs from symptomatic vines revealed brown wedge-shaped cankers of hard consistency. Twelve symptomatic samples from spur and cordons were collected, surface disinfected by dipping into 5% (v/v) sodium hypochlorite for 2 min, and small pieces from the edge of necrotic and healthy tissue were removed and plated onto potato dextrose agar (PDA) at 25°C in the dark. Based on colony and conidia morphological characteristics, isolates were divided in three species, named Diplodia seriata, Botryosphaeria dothidea, and Neofusicoccum luteum. D. seriata colonies were gray-brown with dense aerial mycelium producing brown cylindric to ellipsoid conidia rounded at both ends and averaged 22.4 × 11.7 μm (n = 50). B. dothidea colonies were initially white with abundant aerial mycelium, gradually becoming dark green olivaceous. Conidia were fusiform to fusiform elliptical with a subobtuse apex and averaged 24.8 × 4.7 μm (n = 50). N. luteum colonies were initially pale to colorless, gradually darkening with age and becoming gray to dark gray producing a yellow pigment that diffuses into the agar. Conidia were hyaline, thin-walled, aseptate, fusiform to fusiform elliptical, and averaged 19.8 × 5.5 μm (n = 50). Identity of the different taxa was confirmed by sequence analyses of the internal transcribed spacer (ITS1-5.8S-ITS2) region of the rDNA and part of the elongation factor 1-alpha (EF1-α) gene. BLAST analysis of sequences indicated that six isolates were identified as D. seriata (GenBank: AY259094, AY343353), one isolate as B. dothidea (AY236949, AY786319) and one isolate as N. luteum (AY259091, AY573217). Sequences were deposited in GenBank under accessions from KC178817 to KC178824 and from KF546829 to KF546836 for ITS region and EF1-α gene, respectively. A pathogenicity test was conducted on detached green shoots cv. Italia for the eight Botryosphaeriaceae isolates. Shoots were inoculated by placing a colonized agar plug (5 mm diameter) from the margin of a 7-day-old colony on fresh wound sites made with a sterilized scalpel. Each wound was covered with moisturized cotton and sealed with Parafilm. Control shoots were inoculated using non-colonized PDA plugs. After 6 weeks, discoloration of xylem and phloem and necrosis with average length of 38.8, 17.6, and 11.2 mm were observed from inoculated shoots with D. seriata, N. luteum, and B. dothidea, respectively, and all three fungi were re-isolated from necrotic tissue, satisfying Koch's postulates. Control shoots showed no symptoms of the disease and no fungus was re-isolated. In Tunisia, Botryosphaeria-related dieback was reported only on citrus tree caused by B. ribis (2), on Pinus spp. caused by D. pinea (4), on Quercus spp. caused by D. corticola (3), and on olive tree (Olea europea) caused by D. seriata (1). To our knowledge, this is the first report of D. seriata, B. dothidea, and N. luteum associated with grapevine dieback in Tunisia. References: (1) M. Chattaoui et al. Plant Dis. 96:905, 2012. (2) H. S. Fawcett. Calif. Citrogr. 16:208, 1931. (3) B. T. Linaldeddu et al. J. Plant Pathol. 91:234. 2009. (4) B. T. Linaldeddu et al. Phytopathol. Mediterr. 47:258, 2008.


2017 ◽  
Vol 53 (2) ◽  
pp. 108 ◽  
Author(s):  
Ratna Sofaria Munir ◽  
Nurmawati Fatimah ◽  
Bambang Hermanto

Indonesia has a variety of herbal plants used as herbal/traditional medicines. Singawalang (Petiveria alliacea) is one of the herbal plants usually used in the United States as a cough medicine because of its expectorant effect. Singawalang plants are also widely used to cure tuberculosis. However, the investigations on the effects of toxicity on this plant leaf extract has not been done. This study aims to investigate the effects of active compounds in singawalang against Mycobacterium tuberculosis using a variety of solvents. The active compound of ethanol extract was obtained by maceration using ethanol solvent. The extract was then fractionated using column chromatography method, and using gradual eluent to produce fraction. The doses used were 0.5 mg/ml; 1 mg/ml; 2 mg/ml; 70% ethanol, h-hexane, benzene, chloroform, ethylacetate, silica gel 60GF254, Middlebrook 7H9, and 7H10. The reactions using Singawalang leaf extract with various solvents resulted in a reduction of the Mycobacterium tuberculosis colony growth, compared with the reaction on control treatment, treatment using DMSO 1%, and treatment using 70% ethanol. As a conclusion, the various solvents used did not make a significant difference. However, control treatment, treatment using DMSO 1%, and treatment using 70% ethanol had significant results.


Plant Disease ◽  
2011 ◽  
Vol 95 (9) ◽  
pp. 1187-1187 ◽  
Author(s):  
A. O. Adesemoye ◽  
A. Eskalen

Eutypella is one of the few genera in the Diatrypaceae considered plant pathogens (1). In California, E. vitis and other members of the Diatrypaceae cause branch and trunk canker on grapevine (3,4). Eutypella spp. have not previously been documented as pathogens of citrus. In a 2010 survey on citrus branch canker and dieback in six citrus-growing counties of California, four isolates of Eutypella species were detected in Riverside and San Diego counties. Canker symptoms included dieback and bark cracking, and cuts made through symptomatic trees showed that the cankers were expanding through the center of the tree. Branch samples were collected from 10 trees per orchard and 5 to 10 orchards per county (102 trees for two counties). Pieces of symptomatic tissue (1 to 2 mm2) were plated onto potato dextrose agar amended with 0.01% tetracycline (PDA-tet) and incubated at 25°C for 4 days. All isolates were identified by morphological and molecular characteristics. PCR of isolates was performed in a thermal cycler using two primer pairs, ITS4/5 and Bt2a/2b for amplifying the internal transcribed spacer (ITS1), 5.8S, and ITS2 region and the β-tubulin gene, respectively (2,3). PCR products were sequenced at the University of California, Riverside Genomics Core and the sequences compared in a BLAST search. Four isolates identified as Eutypella spp. included two (UCR1088 and UCR1101) from San Diego County and two (UCR1148 and UCR1149) from the Riverside County samples. The sequences were deposited in GenBank (HQ880579, JF758610, HQ880581, and HQ880582 and HQ880583, JF758611, HQ880585, and HQ880586 for the ITS regions and β-tubulin gene, respectively. ITS sequences for UCR1088 and UCR1101 had 98 and 100% match, respectively, to Eutypella spp. ITS sequences in GenBank (GQ293959 to GQ293961), while UCR1148 and UCR1149 matched 99% (GQ293956 to GQ293958). On the basis of morphological characteristics, UCR1088 and UCR1101 were similar to Eutypella spp. group 1, while UCR1148 and UCR1149 were similar to Eutypella spp. group 3 (4). Pathogenicity tests were conducted with all four isolates on detached shoots from healthy citrus trees of the same cultivar/rootstock from which each isolate was obtained. One wound per shoot was made on 1-year-old, green, detached shoots using a 3-mm-diameter cork borer and the wounded surfaces were inoculated with 3-mm-diameter mycelial plugs of 5-day-old cultures of each isolate growing on PDA-tet. Inoculated wounds and shoot ends were covered with petroleum jelly and wrapped with Parafilm (3). Control shoots were inoculated with sterile agar plugs. There were 10 inoculated shoots per isolate and noninoculated control treatment. Shoots were incubated at 25°C in moist chambers for 6 weeks. Lesions similar to those on the original infected shoots were observed on all inoculated shoots except the control treatment. Reisolation and identification of fungi from inoculated and control shoots were done using methods described above. Inoculated isolates were recovered from 100% of inoculated shoots but none was recovered from noninoculated shoots, indicating association of Eutypella spp. with citrus branch canker. To our knowledge, this is the first report of Eutypella spp. associated with cankers on citrus in California. References: (1) B. Piskur et al. Plant Dis. 91:1579, 2007. (2) B. Slippers et al. Mycologia 96:83, 2004. (3) F. P. Trouillas and W. D. Gubler. Plant Dis. 94:867, 2010. (4) F. P. Trouillas et al. Mycologia 102:319, 2010.


Plant Disease ◽  
2013 ◽  
Vol 97 (2) ◽  
pp. 289-289
Author(s):  
N. Mitkowski ◽  
A. Chaves

Waitea circinata Warcup and Talbot (also referred to as W. circinata var. circinata) is an important fungal pathogen of amenity turfgrasses and is especially problematic on Poa annua in putting greens in the late spring or early summer. The pathogen was first identified in 2005 from Japan and has since been seen widely throughout the United States (1,2). On occasion, the pathogen has been observed attacking creeping bentgrass (Agrostis stolonifera) but is typically less virulent. Disease symptoms include prominent yellow rings appearing throughout established turf and moderate leaf necrosis. In the summer of 2012, moss from a section of fairway on a golf course in Edwards, CO was observed to be rapidly killed by a fungal pathogen producing copious amounts of aerial mycelium and appearing similar to Waitea microscopically. Aerial mycelium was transferred to acidified potato dextrose agar (PDA) (1 ml lactic/L). After 1 day at 25°C, mycelia were transferred to PDA. After 2 weeks, plates were covered with white aerial mycelium and separate, spherical, 0.5-mm diameter, salmon-colored sclerotia, which turned dark brown within a few days and were produced submerged throughout the media. Spores were never produced and right-angled branching of mycelia, characteristic of Waitea, was observed in mature cultures. Mycelial plugs were incubated in nutrient broth and DNA was extracted using a MoBio Power Plant DNA extraction kit. Amplification of ribosomal ITS sequences with ITS4 and ITS5 resulted in a 100% identity match with GenBank sequence HM807352, W. circinata var. circinta (3). To demonstrate pathogenicity on Bryum argenteum, unaffected moss from the submitted sample (identified as B. argenteum var. argenteum via 100% sequence identity with the published GenBank sequence GU907062) was removed from the originally submitted sample and placed in separate growth chambers at 95% humidity and 21, 26, and 31°C. An additional experiment employed local B. agenteum plants collected from the URI Kingston, RI campus. Agar plugs from the isolated W. circinata were placed on top of the moss and within 2 days the fungus had caused complete mortality at all three temperatures. The experiment was also undertaken using the same environmental conditions with 5-week-old annual bluegrass (P. annua) and creeping bentgrass cv. A4 grown from seed. Plants were inoculated with infected rye grains at 31, 26, and 21°C. After 1 week, the P. annua plants showed significant mortality at 26 and 31°C with little infection at 21°C and the A. stolonifera plants showed moderate mortality at 26°C and little infection at the other two temperatures. All experiments utilized an additional uninoculated control treatment that showed no moss/turf necrosis or mortality. Experiments were all repeated once and used three replicates per experiment. While moss is not intentionally cultivated on golf courses, it does occur with regularity and often presents itself as a difficult pest to manage. This particular isolate of W. circinata has identical ribosomal and physiological characteristics of the reported P. annua pathogen but can attack one moss species and may be a possible candidate for selective biological control of moss in golf course settings. It is unclear how widespread moss pathogenicity is within W. circinata. References: (1) E. N. Njambere et al. Plant Dis. 95:78 2011. (2) T. Toda et al. Plant Dis. 89:536, 2005. (3) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications, 1990.


Plant Disease ◽  
1999 ◽  
Vol 83 (3) ◽  
pp. 302-302 ◽  
Author(s):  
Gy. Bohár ◽  
L. Kiss

Common ragweed (Ambrosia artemisiifolia L.) is reported as a host of Sclerotinia sclerotiorum (Lib.) de Bary in North America (2,4), but not in Europe. A Hungarian survey of fungal diseases of ragweed in 1994 did not find sclerotinia rot of common ragweed (A. artemisiifolia var. elatior (L.) Descourt.) (1). In autumn 1998, mature ragweed plants, 1 to 1.5 m tall, were collected from the borders of four sunflower (Helianthus annuus L.) fields in which sclerotinia rot of sunflower was frequently observed during the season, and also from six other roadside sites in Hungary. Ragweed plants exhibiting symptoms characteristic of sclerotinia rot, i.e., wilting foliage and light brown, dry lesions on the stems, were found only near two sunflower fields. Black, round to irregular or oblong sclerotia were also observed on the infected ragweed plants both externally on the stem lesions and internally, in the pith cavity. Sclerotia measured up to 5 mm in diameter and were 5 to 14 mm long. After isolation on potato dextrose agar, the pathogen produced abundant aerial mycelium and large sclerotia characteristic of S. sclerotiorum. To confirm pathogenicity, potted seedlings and mature plants of ragweed were inoculated in the greenhouse with autoclaved wheat grains colonized with mycelia of S. sclerotiorum placed 0.5 to 1 cm from the collar of the test plants. Seedlings were killed in 2 to 3 days while mature plants wilted after 5 to 6 days. In a field test, six mature plants were inoculated by attaching mycelial disks to their stems with Parafilm. These plants wilted 12 to 14 days after inoculation. The pathogen was reisolated from all diseased plants. This is the first report of S. sclerotiorum on common ragweed in Europe. Nonsclerotial mutants of the fungus (3) are being produced to be tested as potential biocontrol agents of common ragweed, which has become not only the most widespread, but also the most important allergenic plant species in Hungary since the early 1990s. References: (1) Gy. Bohár and L. Vajna. Nōvényvédelem 32:527, 1996. (2) G. J. Boland and R. Hall. Can. J. Plant Pathol. 16:93, 1994. (3) G. J. Boland and E. A. Smith. Phytopathology 81:766, 1991.(4) D. F. Farr et al. 1989. Fungi on Plants and Plant Products in the United States. American Phytopathological Society, St. Paul, MN.


Plant Disease ◽  
2013 ◽  
Vol 97 (7) ◽  
pp. 992-992 ◽  
Author(s):  
Y. L. Li ◽  
Z. Zhou ◽  
W. Lu ◽  
J. R. Ye

Sansevieria trifasciata originates from tropical West Africa. It is widely planted as a potted ornamental in China for improving indoor air quality (1). In February 2011, leaves of S. trifasciata plants in an ornamental market of Anle, Luoyang City, China, were observed with sunken brown lesions up to 20 mm in diameter, and with black pycnidia present in the lesions. One hundred potted plants were examined, with disease incidence at 20%. The symptomatic leaves affected the ornamental value of the plants. A section of leaf tissue from the periphery of two lesions from a plant was cut into 1 cm2 pieces, soaked in 70% ethanol for 30 s, sterilized with 0.1% HgCl2 for 2 min, then washed five times in sterilized distilled water. The pieces were incubated at 28°C on potato dextrose agar (PDA). Colonies of two isolates were brown with submerged hyphae, and aerial mycelium was rare. Abundant and scattered pycnidia were reniform, dark brown, and 200 to 350 × 100 to 250 μm. There were two types of setae on the pycnidia: 1) dark brown setae with inward curved tops, and 2) straight, brown setae. Conidia were hyaline, unicellular, cylindrical, and 3.75 to 6.25 × 1.25 to 2.50 μm. Morphological characteristics suggested the two fungal isolates were a Chaetomella sp. To confirm pathogenicity, six mature leaves of a potted S. trifasciata plant were wounded with a sterile pin after wiping each leaf surface with 70% ethanol and washing each leaf with sterilized distilled water three times. A 0.5 cm mycelial disk cut from the margin of a 5-day-old colony on a PDA plate was placed on each pin-wounded leaf, ensuring that the mycelium was in contact with the wound. Non-colonized PDA discs were placed on pin-wounded leaves as the control treatment. Each of two fungal isolates was inoculated on two leaves, and the control treatment was done similarly on two leaves. The inoculated plant was placed in a growth chamber at 28°C with 80% relative humidity. After 7 days, inoculated leaves produced brown lesions with black pycnidia, but no symptoms developed on the control leaves. A Chaetomella sp. was reisolated from the lesions of inoculated leaves, but not from the control leaves. An additional two potted plants were inoculated using the same methods as replications of the experiment, with identical results. To confirm the fungal identification, the internal transcribed spacer (ITS) region of rDNA of the two isolates was amplified using primers ITS1 and ITS4 (2) and sequenced. The sequences were identical (GenBank Accession No. KC515097) and exhibited 99% nucleotide identity to the ITS sequence of an isolate of Chaetomella sp. in GenBank (AJ301961). To our knowledge, this is the first report of a leaf spot of S. trifasciata caused by Chaetomella sp. in China as well as anywhere in the world. References: (1) X. Z. Guo et al. Subtropical Crops Commun. Zhejiang 27:9, 2005. (2) T. J. White et al. PCR Protocols: A Guide to Methods and Applications. M. A. Innis et al., eds. Academic Press, San Diego, CA, 1990.


Plant Disease ◽  
2010 ◽  
Vol 94 (10) ◽  
pp. 1266-1266 ◽  
Author(s):  
M. T. Mmbaga ◽  
Y. Li ◽  
M.-S. Kim

Garden hydrangea (Hydrangea macrophylla) is a popular flowering shrub that grows well in Tennessee but foliar diseases impact their appearance, health, and market value. Leaves of garden hydrangea showed necrotic lesions with concentric rings of brown and dark brown at the Tennessee State University Research Center in McMinnville. A fungus was recovered from June and July leaf samples with 20% frequency of isolation from approximately 40 leaf pieces that were surface sterilized and plated in potato dextrose agar (PDA). Isolates developed white colonies and dark gray-to-black, spore-bearing mycelial cushions (sporodochia) that formed on older colonies (30 to 45 days old) at 25 ± 2°C. Conidia were hyaline to slightly dark, one-celled, ovoid to elongate with rounded ends, and 2.0 to 2.5 × 5.5 to 6.5 μm. These morphological characteristics were consistent with those described for Myrothecium roridum Tode ex Fr. (1). DNA sequence for three isolates of this fungus showed identical internal transcribed spacer (ITS) region sequences (GenBank Accession No. HM215150) with 99% maximum sequence identity to M. roridum isolates (GenBank Accession Nos. AJ301994.1 and AJ608978). Another close match (97%) was with M. gramineum (GenBank Accession No. FJ235084) and M. tongaense (GenBank Accession No. AY254157). Pathogenicity of M. roridum was evaluated on detached leaves from three hydrangea cultivars, Nikko Blue, All Summer Beauty, and Blue bird. Four, medium-size, detached leaves were placed in moist chambers and inoculated with 5-mm mycelial plugs from 14-day-old cultures; sterile PDA was used as the control treatment. A randomized, complete-block experimental design was used with a replication of four leaves per cultivar. Incubation temperature was 26 ± 2°C. Necrotic lesions started 4 to 5 days after inoculation in all inoculated leaves; lesions expanded to cover 10 to 25% of the leaf surface and formed concentric rings; sterile PDA plugs did not produce leaf lesions. This experiment was repeated twice and similar symptoms were produced; M. roridum was reisolated from all inoculated leaves. Spray inoculation of detached leaves of hydrangea cv. Pretty Maiden with 5 × 104 spores/ml produced similar symptoms; leaves sprayed with water remained symptom free. M. roridum has a wide host range and similar symptoms have been reported on other ornamentals including salvia (2), begonia ( http://mrec.ifas.ufl.edu/foliage/folnotes/begonias.htm ), gardenia ( http://cfextension.ifas.ufl.edu/agriculture/ nursery_production/ documents/Gardenia.pdf ), and cotton (3). To our knowledge, this is the first report of M. roridum causing leaf spot on H. macrophylla in the United States. References: (1) M. B. Ellis. Page 465 in: More Damatacous Hyphomycetes. CABI, Wallingford, UK. 1993. (2) J. A. Mangandi et al. Plant Dis. 91:772, 2007. (3) R. L. Munjal. Indian Phytopathol. New Delhi, 13:150, 1960.


Plant Disease ◽  
2014 ◽  
Vol 98 (9) ◽  
pp. 1274-1274 ◽  
Author(s):  
G. A. Díaz ◽  
B. A. Latorre ◽  
S. Jara ◽  
E. Ferrada ◽  
P. Naranjo ◽  
...  

Chile is considered the third major exporter of kiwifruits (Actinidia deliciosa (A. Chev.) C. F. Liang & A. R. Ferguson) worldwide after Italy and New Zealand (1). The genus Diaporthe Nitschke (anamorph: genus Phomopsis) has been reported as causing postharvest rot in kiwifruit (4). During the current study, 1,400 fruits arbitrarily collected from seven controlled atmosphere (CA) rooms after 90 days of storage conditions (2% O2, 5% CO2) determined that 21.5% of the fruit were affected by decay and 0.86% developed symptoms different than those caused by Botrytis cinerea, the main postharvest pathogen associated to kiwifruit. Symptoms were soft rot with brown skin that started at the stem-end and in severe cases affected the entire fruit. Internally, affected fruit showed browning and watery tissues. Twelve affected fruits were surface disinfested (75% ethanol) and small pieces of internal rotten tissues were placed on acidified potato dextrose agar (APDA) for 7 days at 20°C. Twelve isolates were obtained, and four of them were identified morphologically and molecularly as Diaporthe ambigua, a species that has been previously described causing rot in stored kiwifruits in Chile (2). However, eight other flat, white to grayish colonies with sparse dirty-white aerial mycelium at the edge of the dish were obtained (3). Black pycnidia contained unicellular, hyaline, biguttulate, oval to cylindrical alpha conidia, with obtuse ends of (7.9) 6.7 (5.3) × (2.9) 2.5 (2.1) μm (n = 30). These isolates were tentatively identified as a Diaporthe sp. The species identification was determined by sequencing comparison of the internal transcribed spacer (ITS1-5.8S-ITS2) region of the rDNA (GenBank Accession Nos. KJ210020 to 24, KJ210027, and KJ210033) and a portion of beta-tubulin (BT) (KJ210034 to 38, KJ210041, and KJ210047) using primers ITS4-ITS5 and Bt2a-Bt2b, respectively. BLAST analyses showed 99 to 100% identity with D. novem J.M. Santos, Vrandecic & A.J.L Phillips reference ex-type (KC343156 and KC344124 for ITS and BT, respectively) (3). Eighteen mature kiwifruits cv. Hayward were inoculated using a sterile cork borer on the surface of the fruit and placing 5-mm agar plugs with mycelial of D. novem (DN-1-KF). An equal number of fruits treated with sterile agar plugs were used as negative controls. After 30 days at 0°C under CA, all inoculated fruit showed rot symptoms with lesions 7.8 to 16.4 mm in diameter. The same D. novem isolate was inoculated with 30 μl of a conidial suspension (106 conidia/ml) on the surface of 18 ripe kiwifruits that were previously wounded and non-wounded as described above. An equal number of wounded and non-wounded fruits, treated with 30 μl sterile water, were used as negative controls. All inoculated wounded fruits developed rot symptoms with necrotic lesions of 14.1 to 20.2 mm of diameter after 14 days at 25°C. Inoculated non-wounded and negative control fruits remained symptomless. Koch's postulates were fulfilled by re-isolating D. novem only from the symptomatic fruits. To our knowledge, this is the first report of rot caused by D. novem on kiwifruit during cold storage in Chile and worldwide. Therefore, both Diaporthe species appears to be associated to Diaporthe rot of kiwifruit in Chile. References: (1) Belrose, Inc. World Kiwifruit Review. Belrose, Inc. Publishers, Pullman, WA, 2012. (2) J. Auger et al. Plant Dis. 97:843, 2013. (3) R. Gomes et al. Persoonia 31:1, 2013. (4) L. Luongo et al. J. Plant Pathol. 93:205, 2011.


Plant Disease ◽  
2021 ◽  
Author(s):  
Robert N. Trigiano ◽  
Sarah L. Boggess ◽  
Michelle Odoi ◽  
Denita Hadziabdic ◽  
Ernest C. Bernard ◽  
...  

Helianthus verticillatus, the whorled sunflower, is an endangered species found only in the southern United States (Trigiano et al. 2021) that is being developed for ornamental uses. This sunflower species requires little to no maintenance, produces spectacular floral displays from September into October, and attracts numerous potential pollinators including many native bees (Strange et al. 2020). In June and July of 2021, chlorotic, irregularly shaped spots were observed on the adaxial surface of mature leaves of two vegetatively produced clones of H. verticillatus (Trigiano et al., 2021) at three locations in Knoxville, TN. In September, yellow (4A, Royal Horticultural Society Color Chart) sori were abundant on abaxial surfaces and more rarely on the adaxial leaf surfaces of both clones at all locations. Globose-to-cylindrical, yellow urediniospores were 23.7µm (20-32) x 18.9 (16-22) µm (n = 30) with irregular, verrucose ornamentation. The morphology and dimensions of the urediniospores were similar to other Coleosporium species (e.g., C. asterum, Back et al., 2014). Telia were waxy, red-brown (167A; B) and developed in October with colder temperatures. Cylindrical teliospores were sessile, 1-celled, thin-walled with basidia ca. 93 µm (70-117) x 25 µm (19-29), consistent with spores of C. helianthi (Cummins, 1978). DNA was obtained from urediniospores using a Phire kit (ThermoFisher Scientific, Waltham, MA) and the 28S rDNA region was amplified using the NL1 and NL4 primers (Back et al. 2014) (Genbank accession # OL364847) as well as ITS 1-4 primers (White et al. 1990) (GenBank accession OL364848). For comparison, DNA sequences were also obtained from authentic C. helianthi on H. divaricatus in the Arthur Fungarium at Purdue University (#PURN11678; GenBank accession OL364846) using the protocols of Aime et al. (2018). 28S sequences shared 99.65% (568/570 bp) identity. To test Koch’s postulates, seven healthy detached leaves were lightly brushed on both leaf surfaces with leaves with uredia producing urediniospores. The leaves were incubated adaxial side up in 9-cm-diameter Petri dishes on moistened filter paper at ambient laboratory conditions. A similar number of healthy leaves were brushed with healthy leaves, incubated in the laboratory and served as the control treatment. After 7-10 days, uredia with urediniospores formed primarily on the abaxial leaf surface, but a few were present on the adaxial surface of leaves treated with urediniospores, whereas the leaves in the control remained healthy. Molecular, morphological and infectivity studies identified C. helianthi as the pathogen. Coleosporium helianthi occurs on the commercial sunflower, H. annuus, and several wild sunflower species, including H. tuberosum (Jerusalem artichoke) and H. microcephalus (small-headed sunflower), among others in the southern U.S. (Farr and Rossman 2021). Coleosporium species are heteroecious and mostly macrocyclic rusts (McTaggart and Aime, 2018) with aecia and aeciospores typically found on pines (Pinus spp.). Although H. verticillatus is very susceptible to rust infection and it probably reduces photosynthetic capability, it does not appear to adversely affect flowering in the fall. The disease primarily degrades the aesthetic appeal of the plant but does not require control measures. To our knowledge, this is the first report of C. helianthi infecting H. verticillatus. Voucher material is deposited in the Arthur Herbarium (#PURN23470).


Sign in / Sign up

Export Citation Format

Share Document