scholarly journals Phylogenetic and Morphological Reassessment of Mycosphaerella nawae, the Causal Agent of Circular Leaf Spot in Persimmon

Plant Disease ◽  
2019 ◽  
Vol 103 (2) ◽  
pp. 200-213 ◽  
Author(s):  
Oliul Hassan ◽  
Taehyun Chang

Persimmon (Diospyros kaki) fruit production is severely affected by circular leaf spot worldwide. Mycosphaerella nawae causes circular leaf spot of persimmon (CLSP) and can result in leaf spot, defoliation, early fruit maturation, and subsequent softening and abscission. The morphology and phylogenetic position of M. nawae within the family Mycosphaerellaceae is, therefore, of utmost importance given its impact on persimmon production. Based on previous morphological and molecular studies, the phylogenetic position of the anamorphic genera associated with M. nawae remain in confusion. In the present study, 15 isolates of M. nawae were collected from the tissue of living leaves exhibiting leaf spot symptoms. A subsample of three isolates was characterized phylogenetically and morphologically. Isolates were compared based on DNA sequence data for the internal transcribed spacer region (ITS1-5.8S ITS2), part of the 28S nrDNA including domains D1-D3 (LSU), actin (Act), translation elongation factor 1-alpha (EF-1α), and RNA polymerase II second largest subunit (rpb2). The anamorph and teleomorph structures, ascospore germination patterns, as well as host specificity were used to describe the isolates. The phylogenetic and morphological analyses revealed that M. nawae requires a new holomorphic genus within Mycosphaerellaceae, described herein as Plurivorosphaerella gen. nov. A host specificity test revealed that Plurivorosphaerella nawae comb. nov. (M. nawae) can superficially colonize, but not infect, apple, peach, cherry, and plum.

Phytotaxa ◽  
2021 ◽  
Vol 520 (2) ◽  
pp. 184-194
Author(s):  
ALIREZA POURSAFAR ◽  
ESMAEIL HASHEMLOU ◽  
YOUBERT GHOSTA ◽  
FATEMEH SALIMI ◽  
MOHAMMAD JAVAN-NIKKHAH

Eggplant (Solanum melongena L.) is an economically important solanaceous crop in Iran with fruits used for food and traditional medicine. Despite the importance of Alternaria leaf spot and blight disease of solanaceous crops which is commonly seen in the fields, our knowledge about the causal agents on eggplant is limited. In this study, a set of large-spored Alternaria isolates was recovered from eggplant with leaf spot and blight symptoms in Somehsara region, Guilan province, Iran. All recovered isolates shared conspicuous morphological characteristics e.g. production of large, solitary conidia with several transverse disto- and eusepta and long tapering filamentous beak resemble those seen in the members of Alternaria section Porri. Multi-locus phylogenetic analyses based on the internal transcribed spacer region of nrDNA (ITS-rDNA) and parts of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), second largest subunit of RNA Polymerase II (RPB2), translation elongation factor 1-alpha (TEF1-α) and Alternaria major allergen (Alt a 1) gene sequences provided further evidence supporting not only their exact placement in Alternaria sect. Porri, but also in a distinct lineage representing a new species. The new species was named, described and illustrated herein as Alternaria guilanica sp. nov.. The phylogenetic and morphological comaprisions of the new species with other closely related species were also provided. Pathogenicity test conducted for the new strains revealed that they were capable to induce disease symptoms on eggplant leaves under greenhouse conditions, and re-isolation of the inoculated isolates confirmed Koch’s postulates.


Plant Disease ◽  
2020 ◽  
Author(s):  
Yi Ming Guan ◽  
Shu Na Zhang ◽  
Ying Ying Ma ◽  
Yue Zhang

Siberian ginseng (Eleutherococcus sessiliflorus (Rupr. & Maxim.) S. Y. Hu, Araliaceae), is a perennial medicinal plant that is widely cultivated in China. Leaf spot was observed in 2- and 3-year-old Siberian ginseng in Zuojia County (126°05′23.2″E, 44°03′09.5″N), northeast China, in August 2019. Polygonal or irregular black spots ranging from 2 to 9 mm in diameter were found on infected leaves, and each leaf had dozens of spots. The green color around the lesions gradually faded. As the disease progressed, the spots withered and multiple lesions merged into large disease spots, causing leaf wilting (Fig. 1). More than 38% of plants in one 25-ha field were infected in 2019. Fifteen diseased leaves were collected from those plants and cut into 5-mm pieces. The pieces were surface-disinfected by immersion in 1% NaOCl for 2 min and then rinsing twice with sterile distilled water. The leaf pieces were placed on acidified potato dextrose agar (PDA, pH 4.7) in Petri plates, and incubated in the dark at 25°C. Nineteen isolates were obtained and all were purified from a single spore in water agar. Isolate CWJ7 was randomly selected for identification and pathogenicity testing. The colonies on PDA were olivaceous gray to olivaceous black, velvet, with dense hyphae and a scalloped or irregular margin. The reverse side was gray-black and surrounded by tawny halos. The conidia were aseptate and variable in shape and dimension: piriform, columnar, drop-shaped, dumbbell-shaped or oval, measuring 4.90 (7.03) 9.50 × 2.10 (2.78) 3.40 µm (n=100), and chlamydospores were absent. Black pycnidia (132.2–241.5 µm in diameter) appeared after 7 days. The pathogen was initially identified as Phoma or Phoma-like (Boerema et al. 2004). Further confirmation was also determined by sequencing the nuclear ribosomal internal transcribed spacer region (GenBank accession no. MT912950), 28S ribosomal RNA gene (MT912968), and genes encoding β-tubulin (MT920618), the second largest subunit of RNA polymerase II (MT920619) and translation elongation factor (MT946526) (de Hoog and Gerrits van den Ende 1998; Rehner & Samuels 1994; Liu et al. 1999; Vilgalys & Hester 1990), and Blast searches showed 90%–100% homology with GU237754, GU237938, KT389780, KT389575, and KY484705, respectively. In a phylogenetic analysis combining all loci, CWJ7 and the type strains of Boeremia linicola clustered in one group (Fig. 2). Based on its morphological characteristics and phylogenetic analysis, isolate CWJ7 was identified as B. linicola as revised in 2019 (Jayawardena et al. 2019). Healthy 2-year-old plants were used for pathogenicity testing. The leaves of nine potted plants (one plant per pot, three plants per replicate) were spray-inoculated with a suspension of conidia (1×105 spores/ml) from colonies on PDA for 7 days and cultured for 48 h under continuous black light. Nine plants were sprayed with sterile water as the control. This experiment was repeated twice. All plants were cultured in a greenhouse (25°C, 12-h photoperiod, 78% relative humidity). Clear plastic bags were used to maintain high humidity. After 7 days, the inoculated plants showed lesions on the leaves, similar to those observed in the field. The control plants remained symptomless. The pathogen was reisolated and identified by sequencing. This is the first report of B.linicola causing Siberian ginseng leaf spot, and a new record of this species in China. This disease poses a threat to production and management strategies should be developed.


Author(s):  
P.W. Crous ◽  
J. Carlier ◽  
V. Roussel ◽  
J.Z. Groenewald

The Sigatoka leaf spot complex on Musa spp. includes three major pathogens: Pseudocercospora, namely P. musae (Sigatoka leaf spot or yellow Sigatoka), P. eumusae (eumusae leaf spot disease), and P. fijiensis (black leaf streak disease or black Sigatoka). However, more than 30 species of Mycosphaerellaceae have been associated with Sigatoka leaf spots of banana, and previous reports of P. musae and P. eumusae need to be re-evaluated in light of recently described species. The aim of the present study was thus to investigate a global set of 228 isolates of P. musae, P. eumusae and close relatives on banana using multigene DNA sequence data [internal transcribed spacer regions with intervening 5.8S nrRNA gene (ITS), RNA polymerase II second largest subunit gene (rpb2), translation elongation factor 1-alpha gene (tef1), beta-tubulin gene (tub2), and the actin gene (act)] to confirm if these isolates represent P. musae, or a closely allied species. Based on these data one new species is described, namely P. pseudomusae, which is associated with leaf spot symptoms resembling those of P. musae on Musa in Indonesia. Furthermore, P. eumusae, P. musae and P. fijiensis are shown to be well defined taxa, with some isolates also representing P. longispora. Other genera encountered in the dataset are species of Zasmidium (Taiwan leaf speckle), Metulocladosporiella (Cladosporium leaf speckle) and Scolecobasidium leaf speckle.


Plant Disease ◽  
2019 ◽  
Vol 103 (8) ◽  
pp. 2010-2014 ◽  
Author(s):  
J. Francisco Iturralde Martinez ◽  
Francisco J. Flores ◽  
Alma R. Koch ◽  
Carla D. Garzón ◽  
Nathan R. Walker

A multiplex end-point polymerase chain reaction (PCR) assay was developed for identifying the three-fungal species in the genus Ophiosphaerella that cause spring dead spot (SDS), a devastating disease of bermudagrass. These fungi are difficult to identify by morphology because they seldom produce pseudothecia. To achieve species-specific diagnosis, three pairs of primers were designed to identify fungal isolates and detect the pathogen in infected roots. The internal transcribed spacer region, the translation elongation factor 1-α, and the RNA polymerase II second-largest subunit were selected as targets and served as templates for the design of each primer pair. To achieve uniform melting temperatures, three to five random nucleotide extensions (flaps) were added to the 5′ terminus of some of the designed specific primers. Temperature cycling conditions and PCR components were standardized to optimize specificity and sensitivity of the multiplex reaction. Primers were tested in multiplex on DNA extracted from axenic fungal cultures and from field-collected infected and uninfected roots. A distinct amplicon was produced for each Ophiosphaerella sp. tested. The DNA from Ophiosphaerella close relatives and other common bermudagrass pathogens did not amplify during the multiplex assay. Metagenomic DNA from infected bermudagrass produced species-specific amplicons while DNA extracted from noninfected roots did not. This multiplex end-point PCR approach is a sensitive and specific molecular technique that allows for correct identification of SDS-associated Ophiosphaerella spp. from field-collected roots.


Plant Disease ◽  
2003 ◽  
Vol 87 (2) ◽  
pp. 203-203
Author(s):  
S. T. Koike ◽  
S. A. Tjosvold ◽  
J. Z. Groenewald ◽  
P. W. Crous

Bells-of-Ireland (Moluccella laevis) (Lamiaceae) is an annual plant that is field planted in coastal California (Santa Cruz County) for commercial cutflower production. In 2001, a new leaf spot disease was found in these commercially grown cutflowers. The disease was most serious in the winter-grown crops in 2001 and 2002, with a few plantings having as much as 100% disease incidence. All other plantings that were surveyed during this time had at least 50% disease. Initial symptoms consisted of gray-green leaf spots. Spots were generally oval in shape, often delimited by the major leaf veins, and later turned tan. Lesions were apparent on both adaxial and abaxial sides of the leaves. A cercosporoid fungus having fasciculate conidiophores, which formed primarily on the abaxial leaf surface, was consistently associated with the spots. Based on morphology and its host, this fungus was initially considered to be Cercospora molucellae Bremer & Petr., which was previously reported on leaves of M. laevis in Turkey (1). However, sequence data obtained from the internal transcribed spacer region (ITS1, ITS2) and the 5.8S gene (STE-U 5110, 5111; GenBank Accession Nos. AY156918 and AY156919) indicated there were no base pair differences between the bells-of-Ireland isolates from California, our own reference isolates of C. apii, as well as GenBank sequences deposited as C. apii. Based on these data, the fungus was subsequently identified as C. apii sensu lato. Pathogenicity was confirmed by spraying a conidial suspension (1.0 × 105 conidia/ml) on leaves of potted bells-of-Ireland plants, incubating the plants in a dew chamber for 24 h, and maintaining them in a greenhouse (23 to 25°C). After 2 weeks, all inoculated plants developed leaf spots that were identical to those observed in the field. C. apii was again associated with all leaf spots. Control plants, which were treated with water, did not develop any symptoms. The test was repeated and the results were similar. To our knowledge this is the first report of C. apii as a pathogen of bells-of-Ireland in California. Reference: (1) C. Chupp. A Monograph of the Fungus Genus Cercospora. Cornell University Press, Ithaca, New York, 1954.


Phytotaxa ◽  
2021 ◽  
Vol 513 (2) ◽  
pp. 129-140
Author(s):  
YUAN S. LIU ◽  
JIAN-KUI LIU ◽  
PETER E. MORTIMER ◽  
SAISAMORN LUMYONG

Amanita submelleialba sp. nov. in section Amanita, is described from northern Thailand based on both multi-gene phylogenetic analysis and morphological evidences. It is characterized by having small to medium-sized basidiomata; a yellow to yellowish pale pileus covering pyramidal to subconical, white to yellow white volval remnants; globose stipe base covered conical, white to yellow white volval remnants; fugacious subapical annulus; and absent clamps. Multi-gene phylogenetic analyses based on partial nuclear rDNA internal transcribed spacer region (ITS), partial nuclear rDNA larger subunit region (nrLSU), RNA polymerase II second largest subunit (RPB2), partial translation elongation factor 1-alpha (TEF1-α) and beta-tubulin gene (TUB) indicated that A. submelleialba clustered together with A. elata and A. mira, but represented as a distinct lineage from other extant species in section Amanita. The detailed morphological characteristics, line-drawing illustration and comparisons with morphologically similar taxa are provided.


Plant Disease ◽  
2019 ◽  
Vol 103 (6) ◽  
pp. 1156-1165 ◽  
Author(s):  
M. A. Bautista-Cruz ◽  
G. Almaguer-Vargas ◽  
S. G. Leyva-Mir ◽  
M. T. Colinas-León ◽  
K. C. Correia ◽  
...  

Persian lime (Citrus latifolia Tan.) is an important and widely cultivated fruit crop in several regions of Mexico. In recent years, severe symptoms of gummosis, stem cankers, and dieback were detected in the Persian lime-producing region in the states of Veracruz and Puebla, Mexico. The aims of this study were to identify the species of Lasiodiplodia associated with these symptoms, determine the distribution of these species, and test their pathogenicity and virulence on Persian lime plants. In 2015, symptomatic samples were collected from 12 commercial Persian lime orchards, and 60 Lasiodiplodia isolates were obtained. Fungal identification of 32 representative isolates was performed using a phylogenetic analysis based on DNA sequence data of the internal transcribed spacer region and part of the translation elongation factor 1-α and β-tubulin genes. Sequence analyses were carried out using the Maximum Likelihood and Bayesian Inference methods. Six Lasiodiplodia species were identified as Lasiodiplodia pseudotheobromae, Lasiodiplodia theobromae, Lasiodiplodia brasiliense, Lasiodiplodia subglobosa, Lasiodiplodia citricola, and Lasiodiplodia iraniensis. All Lasiodiplodia species of this study are reported for the first time in association with Persian lime in Mexico and worldwide. L. pseudotheobromae (46.9% of isolates) was the most frequently isolated species followed by L. theobromae (28.1%) and L. brasiliense (12.5%). Pathogenicity on Persian lime young plants using a mycelial plug inoculation method showed that all identified Lasiodiplodia species were able to cause necrotic lesions and gummosis, but L. subglobosa, L. iraniensis, and L. pseudotheobromae were the most virulent.


2021 ◽  
Vol 27 (3) ◽  
pp. 107-114
Author(s):  
Huan Luo ◽  
Myung Soo Park ◽  
Jun Myoung Yu

During a disease survey on weeds and minor cultivated crops in Korea, a brown leaf spot disease was observed on Sonchus asper. Leaf lesions were round or irregular in shape, and grayish brown to brown with a purple margin. In severe infection, lesions enlarged and coalesced, resulting in blighting of the leaves. The isolates from these leaf lesions were identified as Alternaira sonchi based on morphological characteristics and phylogenetic analyses of Internal transcribed spacer region, Alternaria allergen a1, glyceraldehyde 3-phosphate dehydrogenase, RNA polymerase II, and translation elongation factor genes. This study provides a comprehensive description of the morphological characteristics and phylogenetical traits of A. sonchi causing brown leaf spot on S. asper in Korea.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shun Liu ◽  
Mei-Ling Han ◽  
Tai-Min Xu ◽  
Yan Wang ◽  
Dong-Mei Wu ◽  
...  

Fomitopsis pinicola is a common brown-rot fungal species found in northern hemisphere. It grows on many different gymnosperm and angiosperm trees. Recent studies show that it is a species complex; three species from North America and one species from Europe have been recognized in this complex. In the current study, six new species in the Fomitopsis pinicola complex were discovered from East Asia, based on morphological characters and phylogenetic analyses inferred from the sequence data of the internal transcribed spacer (ITS) regions, the second subunit of RNA polymerase II (RPB2), and the translation elongation factor 1-α gene (TEF). Detailed descriptions of the six new species are provided. Our results also indicates that species of the F. pinicola complex from East Asia usually have limited distribution areas and host specialization.


Author(s):  
X.E. Xiao ◽  
W. Wang ◽  
P.W. Crous ◽  
H.K. Wang ◽  
C. Jiao ◽  
...  

Citrus is an important and widely cultivated fruit crop in South China. Although the species of fungal diseases of leaves and fruits have been extensively studied, the causal organisms of branch diseases remain poorly known in China. Species of Botryosphaeriaceae are known as important fungal pathogens causing branch diseases on citrus in the USA and Europe. To determine the diversity of Botryosphaeriaceae species associated with citrus branch diseases in China, surveys were conducted in the major citrus-producing areas from 2017 to 2020. Diseased tissues were collected from twigs, branches and trunks with a range of symptoms including cankers, cracking, dieback and gummosis. Based on morphological characteristics and phylogenetic comparison of the DNA sequences of the internal transcribed spacer region (ITS), the translation elongation factor 1-alpha gene (tef1), the β-tubulin gene (tub2) and the DNA-directed RNA polymerase II second largest subunit (rpb2), 111 isolates from nine provinces were identified as 18 species of Botryosphaeriaceae, including Botryosphaeria dothidea, B. fabicerciana, Diplodia seriata, Dothiorella alpina, Do. plurivora, Lasiodiplodia citricola, L. iraniensis, L. microconidia, L. pseudotheobromae, L. theobromae, Neodeightonia subglobosa, Neofusicoccum parvum, and six previously undescribed species, namely Do. citrimurcotticola, L. guilinensis, L. huangyanensis, L. linhaiensis, L. ponkanicola and Sphaeropsis linhaiensis spp. nov. Botryosphaeria dothidea (28.8 %) was the most abundant species, followed by L. pseudotheobromae (23.4 %), which was the most widely distributed species on citrus, occurring in six of the nine provinces sampled. Pathogenicity tests indicated that all 18 species of Botryosphaeriaceae obtained from diseased citrus tissues in this study were pathogenic to the tested Citrus reticulata shoots in vitro, while not all species are pathogenic to the tested Cocktail grapefruit (C. paradisi × C. reticulata) shoots in vivo. In addition, Lasiodiplodia was the most aggressive genus both in vitro and in vivo. This is the first study to identify Botryosphaeriaceae species related to citrus branch diseases in China and the results provide a theoretical basis for the implementation of prevention and control measures.


Sign in / Sign up

Export Citation Format

Share Document