scholarly journals First Report of Leaf Spot Caused by Corynespora cassiicola on Kiwifruit (Actinidia chinensis) in China

Plant Disease ◽  
2014 ◽  
Vol 98 (11) ◽  
pp. 1586-1586 ◽  
Author(s):  
G. Q. Yuan ◽  
Y. L. Xie ◽  
D. C. Tan ◽  
Q. Q. Li ◽  
W. Lin

Kiwifruit (Actinidia) is a common fruit cultivated in many countries. Actinidia deliciosa and A. chinensis are two commercially important kiwifruit species. Over 70,000 ha are grown annually in China. In 2012, a leaf spot disease of A. chinensis was observed in several orchards in Leye County (106°34′ E, 24°47′ N), Guangxi Zhuang Autonomous Region, China. The disease mainly damaged the leaves during the fruit development stage through to the maturity stage. Initially reddish-brown small lesions appeared on the leaves; later, typical symptoms were tan to taupe lesions surrounded by purple brown margins, nearly circular to irregular, 2 to 10 × 2.2 to 15.5 mm in diameter. Some lesions exhibited a concentric pattern. The lesions eventually coalesced, causing extensive leaf necrosis and defoliation. The fungus that sporulated from lesions had the following morphological characteristics: light brown conidiophores with slightly swollen apexes, light brown conidia formed singly or in acropetal chains, straight or curved, cylindrical to oblavate, 52.9 to 240.5 μm long (avg. 138.9 μm) and 5.3 to 13.6 μm wide (avg. 8.4 μm), 5 to 12 distoseptate, with a flat, darkened, and thickened hilum. These morphological characteristics corresponded with that of Corynespora cassiicola (Berk. & Curt.) Wei (1). To isolate the pathogen of the disease, small pieces of symptomatic foliar tissues, including young lesions, typical older lesions, and atypical older lesions with concentric pattern were surface sterilized with 75% ethanol for 30 to 60 s, disinfected in 0.1% HgCl2 for 1 min followed by washing with sterile water, plated on PDA, and incubated at 28°C for 7 to 10 days. Gray to dark gray colonies and conidia of C. cassiicola were observed. To validate the identity of the fungus, the sequence of the ITS region of one of the purified strains, LYCc-1, was determined. DNA was extracted from the isolate that was grown on PDA at 28°C for 4 days, and the ITS region was amplified using the universal primer pair ITS4/ITS5 (2). The double strand consensus sequence was submitted to GenBank (KJ747095) and had 99% nt identity with published sequences of C. cassiicola in GenBank (JN853778, FJ852574, and FJ852587). Pathogenicity tests were carried out on detached leaves in petri dishes in an incubator at 28°C and on whole plants in a glasshouse at 25 ± 3°C. The isolations did not produce enough conidia in pure culture, so mycelial discs were used in pathogenicity tests. For both assays, 60-day-old healthy kiwifruit leaves were inoculated with a 5-mm mycelial disc obtained from the periphery of a 5-day-old C. cassiicola strain (LYCc-1) grown on PDA. The PDA discs were placed on the leaf surface with their mycelial surface down and secured with sterile wet cotton. Controls consisted of leaves that were inoculated with sterile PDA discs. For the detached leaf assay, the leaves were placed on filter paper reaching water saturation in petri dishes, and for the whole plant assays the inoculated leaves were kept moist with intermittent water sprays for 48 h. Four leaves of each plant were inoculated with the isolate in both assays, and experiment was repeated twice. Eight inoculated leaves of the detached leaf assay all showed the first water soaked lesions 36 h after inoculation, followed by extensive leaf rot 72 h after inoculation, and yielded abundant conidia of C. cassiicola. Six out of eight leaves inoculated on whole plants showed the first lesions 5 days after inoculation, whereas control leaves remained healthy. Only C. cassiicola was re-isolated from the lesions in both assays, fulfilling Koch's postulates. This is the first report of leaf spot caused by C. cassiicola on kiwifruit in China. References: (1) M. B. Ellis. Dematiaceous Hyphomycetes. CMI, Kew, Surrey, UK, 1971. (2) T. J. White et al. In: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, 1990.

Plant Disease ◽  
2010 ◽  
Vol 94 (7) ◽  
pp. 916-916 ◽  
Author(s):  
X.-B. Liu ◽  
T. Shi ◽  
C.-P. Li ◽  
J.-M. Cai ◽  
G.-X. Huang

Cassava (Manihot esculenta) is an important economic crop in the tropical area of China. During a survey of diseases in July and September of 2009, leaf spots were observed on cassava plants at three separate plantations in Guangxi (Yunfu and Wuming) and Hainan (Baisha) provinces. Circular or irregular-shaped leaf spots were present on more than one-third of the plants. Spots were dark brown or had white papery centers delimited by dark brown rims and surrounded by a yellow halo. Usually, the main vein or small veinlets adjacent to the spots were dark. Some defoliation of plants was evident at the Wuming location. A fungus was isolated from symptomatic leaves from each of the three locations and designated CCCGX01, CCCGX02, and CCCHN01. Single-spore cultures of these isolates were incubated on potato dextrose agar (PDA) for 7 days with a 12-h light/dark cycle at a temperature of 28 ± 1°C. Conidiophores were straight to slightly curved, unbranched, and pale to light brown. Conidia were formed singly or in chains, obclavate to cylindrical, straight or curved, subhyaline-to-pale olivaceous brown, 19.6 to 150.3 μm long and 5.5 to 10.7 μm wide at the base, with 4 to 13 pseudosepta. Morphological characteristics of the specimen and their conidia were similar to the descriptions for Corynespora cassiicola (2). The isolate CCCGX01 was selected as a representative for molecular identification. Genomic DNA was extracted by the cetyltrimethylammoniumbromide protocol (3) from mycelia and used as a template for amplification of the internal transcribed spacer (ITS) region of rDNA with primer pair ITS1/ITS4. The sequence (GenBank Accession No. GU138988) exactly matched several sequences (e.g., GenBank Accession Nos. FJ852715, EF198117, and AY238606) of C. cassiicola (1). Young, healthy, and fully expanded green leaves of cassava cv. SC205 were surface sterilized. Ten leaves were inoculated with 10-μl drops of 104 ml suspension of conidia and five leaves were inoculated with the same volume of sterile water to serve as controls. After inoculation, leaves were placed in a dew and dark chamber for 36 h at 25°C and subsequently transferred to the light for 5 days. All inoculated leaves with isolates showed symptoms similar to those observed in natural conditions, whereas the controls remained symptom free. The morphological characteristics of reisolated conidia that formed on the diseased parts were identical with the nature isolates. To our knowledge, this is the first report of leaf spot caused by C. cassiicola on cassava in China. References: (1) L. J. Dixon et al. Phytopathology 99:1015, 2009. (2) M. B. Ellis et al. Corynespora cassiicola. No. 303 in: CMI Description of Pathogenic Fungi and Bacteria. Commonwealth Mycological Institute, Kew, UK 1971. (3) J. R. Xu et al. Genetics 143:175, 1996.


Plant Disease ◽  
2012 ◽  
Vol 96 (5) ◽  
pp. 762-762 ◽  
Author(s):  
J.-H. Kwon ◽  
D.-W. Kang ◽  
Y.-S. Kwak ◽  
J. Kim

In September and October 2010, leaf spots were observed on Korean raspberry (Rubus crataegifolius Bunge) plants in farmers' fields in Hapcheon, Gyeongnam Province, South Korea. Disease incidence ranged from 50 to 80% among fields. Circular- to irregular-shaped spots surrounded by yellow halos occurred frequently on the leaves of Korean raspberry plants. Brown spots became dark with wavy borders and ranged from 20 to 300 mm in diameter. Infected leaves became chlorotic, blighted, and eventually died. Fungal hyphae covered the lesions with abundant conidia and conidiophores. Fresh leaf specimens were collected from infected plants and the putative causal pathogen was isolated onto potato dextrose agar (PDA). A total of 30 isolates of the fungus were collected from diseased plants collected in the field. Fungal colonies were gray to brown on PDA. Colonies formed conidia, 38 to 210 × 8 to 20 μm, which were solitary or catenary, obclavate to cylindrical, smooth, straight or curved, and subhyaline to pale brown or brown. Conidiophores, 98 to 840 × 4 to 12 μm, were slightly or conspicuously swollen at apex, single, simple, straight or slightly flexuous, pale to midbrown, smooth, septate, thick, monotretic, and determinate or in tufts. Morphological characteristics of the fungal specimens were similar to descriptions of Corynespora cassiicola (1). A representative isolate of the pathogen was used to inoculate leaves of Korean raspberry plants for pathogenicity testing. Five leaves of a 3-month-old potted plant were sprayed with a suspension of conidia in water. Conidia were harvested from PDA cultures and adjusted to 2 × 104 conidia/ml with a hemocytometer. Five leaves sprayed with sterile distilled water served as controls. Inoculated plants were placed in a humid chamber with 100% relative humidity at 30°C for 24 h and then moved to a greenhouse. Symptoms similar to those observed in the farmers' fields developed on the inoculated leaves within 12 days, whereas the controls remained asymptomatic. The causal fungus was reisolated from the lesions of inoculated plants to satisfy Koch's postulates. To confirm the identity of the fungus, the complete internal transcribed spacer (ITS) rDNA region was amplified and sequenced (3). Amplification of the ITS region generated a 559-bp sequence (GenBank Accession No. JQ340026) with 100% similarity to sequences of C. cassiicola in GenBank (Accession No. GU138988) causing leaf spot on cassava (2). Based on the symptoms, morphological characteristics, pathogenicity, and molecular identification, this fungus was identified as C. cassiicola (1). To our knowledge, this is the first report of leaf spot caused by C. cassiicola on Korean raspberry. The recent occurrence of leaf spot on Korean raspberry suggests that C. cassiicola is spreading widely and posing a serious threat to these plants in Korea. References: (1) M. B. Ellis et al. No. 303 in: CMI Descriptions of Pathogenic Fungi and Bacteria. Surrey, Kew, UK, 1971. (2) X.-B. Liu et al. Plant Dis. 94:916, 2010. (3) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. M. A. Innis et al., eds. Academic Press, Inc., New York, 1990.


Plant Disease ◽  
2014 ◽  
Vol 98 (7) ◽  
pp. 1007-1007 ◽  
Author(s):  
B. J. Li ◽  
J. X. Chuan ◽  
M. Yang ◽  
G. F. Du

Gynura (Gynura bicolor DC.) is a perennial herbaceous plant in the family Compositae. It is an important Chinese vegetable, and is commonly used as a Chinese herbal medicine. In 2010, a severe leaf spot disease was observed on gynura grown in the main production areas in Tong Nan County, Chongqing City, China. Some farms experienced 60% disease incidence. Symptoms usually began on the lower leaves, as circular to elliptical or irregular spots with concentric rings. Individual spots were dark brown with grayish centers, sometimes coalescing and leading to extensive necrosis. The fungus associated with lesions was characterized as follows: Conidiophores were single or in clusters, straight or flexuous, unbranched, percurrent, cylindrical, pale to dark brown, 87.5 to 375.0 μm long and 5.0 to 10.5 μm wide. Conidia were solitary or catenate, straight to slightly curved, obclavate to cylindrical, 3 to 14 pseudoseptate, 82.8 to 237.5 μm long and 7.0 to 7.8 μm wide, and pale brown. The morphological characteristics of the conidia and conidiophores agreed with the descriptions for Corynespora cassiicola (1). To isolate the causal pathogen, surface-sterilized tissue at the margin of lesions was immersed in 75% ethanol for 30 s, rinsed in sterile water, dried in a laminar flow bench, transferred to PDA, and incubated at 28°C. Four single-spore cultures of the isolates were obtained and named from ZBTK10110637 to ZBTK10110640. All strains were identified as C. cassiicola. The isolate ZBTK10110637 was selected as representative for molecular identification. Genomic DNA was extracted by CTAB (2). The internal transcribed spacer (ITS) region of the rDNA was amplified using primers with ITS1 (5′-TCCGATGGTGAACCTGCGG-3′) and ITS4 (5′-TCCTCCGCTTATTGATATGC-3′). Amplicons were 433 bp (GenBank Accession No. JX867272) and shared 100% similarity with that of C. cassiicola (NRC2-1 No. AB539285.1). To confirm pathogenicity, four isolates were used to inoculate 12 gynura plants (6 weeks old) by mist spray-inoculation with 108 spores/ml suspension in sterile distilled water on the leaves. Control plants were misted with sterile distilled water. After inoculation, all plants were incubated in a greenhouse maintained at 20 to 28°C with relative humidity of 80 to 85%. Five days after inoculation, dark brown spots with a grayish center typical of field symptoms were observed on all inoculated plants. No symptoms were seen on water-treated control plants. The fungus was re-isolated from inoculated plants. The morphological characteristics of isolates were identical with the pathogen recovered originally. This is the first report of C. cassiicola on gynura. References: (1) M. B. Ellis. CMI Mycological Papers 65(9):1-15, 1957. (2) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, CA, 1990.


Plant Disease ◽  
2010 ◽  
Vol 94 (6) ◽  
pp. 788-788
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
M. T. Amatulli ◽  
M. L. Gullino

Rudbeckia fulgida (orange coneflower) is an herbaceous species (Asteraceae) grown in full sun in flower beds and borders in gardens. In the summer of 2009, a previously unknown leaf spot was observed on R. fulgida plants in three private gardens located near Biella (northern Italy). Leaves of infected plants showed extensive and irregular, dark brown, necrotic lesions that were slightly sunken with a well-defined border. Lesions initially ranged from 0.5 to 3 mm in diameter and eventually coalesced to cover the entire leaf, which curled without falling. At a later stage, stems were also affected, causing death of the plant. The disease affected 90% of plants. Dark brown pycnidia, 68 to 195 × 60 to 165 (average 135 × 117) μm in diameter, containing hyaline (light gray in mass), and ellipsoid, nonseptate conidia measuring 4.0 to 7.0 × 2.4 to 3.5 (average 5.4 × 3.0) μm were observed on symptomatic tissue. On the basis of these morphological characteristics, the fungus was related to the genus Phoma. Diseased tissue was excised from the margin of lesions, immersed in a solution containing 1% sodium hypochlorite for 2 to 3 s, rinsed in sterile distilled water, and then cultured on potato dextrose agar (PDA) medium. Fungal colonies initially produced a white mycelium that became greenish gray when incubated at temperatures ranging between 22 and 25°C under alternating daylight and darkness (13 h of light and 11 h of dark). After 14 days of incubation, unicellular, cylindrical or truncated cone-shaped, light brown chlamydospores measuring 6 to 12 μm in diameter developed in long chains. The internal transcribed spacer (ITS) region of rDNA was amplified using the primers ITS4/ITS6 and sequenced. BLAST analysis (1) of the 498-bp segment showed 100% homology with a sequence of a Phoma sp. (EF585395). The nucleotide sequence of our isolate was assigned GenBank Accession No. GU573979. Pathogenicity tests were performed by placing 100 ml of a water homogenate of mycelium (1 × 105 mycelial fragments/ml) obtained from 15-day-old PDA cultures of the fungus on leaves of three healthy 4-month-old potted R. fulgida plants. Three plants inoculated with a homogenate of PDA served as controls. Plants were maintained in a greenhouse, in a high humidity chamber for 7 days after inoculation, at temperatures ranging from 18 to 22°C and under high relative humidity conditions (70 to 90%). The first foliar lesions developed on leaves 7 days after inoculation, and after 10 to 12 days, 80% of leaves were severely infected. Control plants remained healthy. The organism reisolated on PDA from leaf lesions was identical in morphology to the isolate used for inoculation. The pathogenicity test was carried out twice. To our knowledge, this is the first report of the presence of a Phoma sp. on R. fulgida in Italy. Mycosphaerella ligulicola was reported on Rudbeckia sp. (2), while M. rudbeckiae and Phoma exigua have been reported on R. hirta (3). Currently, the economic importance of this disease is limited, but may become a more significant problem if the cultivation of this species increases. References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) C. G. C. Chesters and J. P. Blakeman. Ann. Appl. Biol. 60:385, 1967. (3) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society, St. Paul, MN, 1989.


Plant Disease ◽  
2013 ◽  
Vol 97 (12) ◽  
pp. 1654-1654 ◽  
Author(s):  
A. L. Vu ◽  
M. M. Dee ◽  
J. Zale ◽  
K. D. Gwinn ◽  
B. H. Ownley

Knowledge of pathogens in switchgrass, a potential biofuels crop, is limited. In December 2007, dark brown to black irregularly shaped foliar spots were observed on ‘Alamo’ switchgrass (Panicum virgatum L.) on the campus of the University of Tennessee. Symptomatic leaf samples were surface-sterilized (95% ethanol, 1 min; 20% commercial bleach, 3 min; 95% ethanol, 1 min), rinsed in sterile water, air-dried, and plated on 2% water agar amended with 3.45 mg fenpropathrin/liter (Danitol 2.4 EC, Valent Chemical, Walnut Creek, CA) and 10 mg/liter rifampicin (Sigma-Aldrich, St. Louis, MO). A sparsely sporulating, dematiaceous mitosporic fungus was observed. Fungal plugs were transferred to surface-sterilized detached ‘Alamo’ leaves on sterile filter paper in a moist chamber to increase spore production. Conidia were ovate, oblong, mostly straight to slightly curved, and light to olive-brown with 3 to 10 septa. Conidial dimensions were 12.5 to 17 × 27.5 to 95 (average 14.5 × 72) μm. Conidiophores were light brown, single, multiseptate, and geniculate. Conidial production was polytretic. Morphological characteristics and disease symptoms were similar to those described for Bipolaris oryzae (Breda de Haan) Shoemaker (2). Disease assays were done with 6-week-old ‘Alamo’ switchgrass grown from seed scarified with 60% sulfuric acid and surface-sterilized in 50% bleach. Nine 9 × 9-cm square pots with approximately 20 plants per pot were inoculated with a mycelial slurry (due to low spore production) prepared from cultures grown on potato dextrose agar for 7 days. Cultures were flooded with sterile water and rubbed gently to loosen mycelium. Two additional pots were inoculated with sterile water and subjected to the same conditions to serve as controls. Plants were exposed to high humidity by enclosure in a plastic bag for 72 h. Bags were removed, and plants were incubated at 25/20°C with 50 to 60% relative humidity. During the disease assay, plants were kept in a growth chamber with a 12-h photoperiod of fluorescent and incandescent lighting. Foliar leaf spot symptoms appeared 5 to 14 days post-inoculation for eight of nine replicates. Control plants had no symptoms. Symptomatic leaf tissue was processed and plated as described above. The original fungal isolate and the pathogen recovered in the disease assay were identified using internal transcribed spacer (ITS) region sequences. The ITS region of rDNA was amplified with PCR and primer pairs ITS4 and ITS5 (4). PCR amplicons of 553 bp were sequenced, and sequences from the original isolate and the reisolated pathogen were identical (GenBank Accession No. JQ237248). The sequence had 100% nucleotide identity to B. oryzae from switchgrass in Mississippi (GU222690, GU222691, GU222692, and GU222693) and New York (JF693908). Leaf spot caused by B. oryzae on switchgrass has also been described in North Dakota (1) and was seedborne in Mississippi (3). To our knowledge, this is the first report of B. oryzae from switchgrass in Tennessee. References: (1) D. F. Farr and A. Y. Rossman. Fungal Databases. Systematic Mycology and Microbiology Laboratory, ARS, USDA. Retrieved from http://nt.ars-grin.gov/fungaldatabases/, 28 June 2012. (2) J. M. Krupinsky et al. Can. J. Plant Pathol. 26:371, 2004. (3) M. Tomaso-Peterson and C. J. Balbalian. Plant Dis. 94:643, 2010. (4) T. J. White et al. Pages 315-322 in: PCR Protocols: a Guide to Methods and Applications. M. A. Innis et al. (eds), Acad. Press, San Diego, 1990.


Plant Disease ◽  
2012 ◽  
Vol 96 (10) ◽  
pp. 1580-1580
Author(s):  
J. H. Park ◽  
K. S. Han ◽  
J. Y. Kim ◽  
H. D. Shin

Sweet basil, Ocimum basilicum L., is a fragrant herb belonging to the family Lamiaceae. Originated in India 5,000 years ago, sweet basil plays a significant role in diverse cuisines across the world, especially in Asian and Italian cooking. In October 2008, hundreds of plants showing symptoms of leaf spot with nearly 100% incidence were found in polyethylene tunnels at an organic farm in Icheon, Korea. Leaf spots were circular to subcircular, water-soaked, dark brown with grayish center, and reached 10 mm or more in diameter. Diseased leaves defoliated prematurely. The damage purportedly due to this disease has reappeared every year with confirmation of the causal agent made again in 2011. A cercosporoid fungus was consistently associated with disease symptoms. Stromata were brown, consisting of brown cells, and 10 to 40 μm in width. Conidiophores were fasciculate (n = 2 to 10), olivaceous brown, paler upwards, straight to mildly curved, not geniculate in shorter ones or one to two times geniculate in longer ones, 40 to 200 μm long, occasionally reaching up to 350 μm long, 3.5 to 6 μm wide, and two- to six-septate. Conidia were hyaline, acicular to cylindric, straight in shorter ones, flexuous to curved in longer ones, truncate to obconically truncate at the base, three- to 16-septate, and 50 to 300 × 3.5 to 4.5 μm. Morphological characteristics of the fungus were consistent with the previous reports of Cercospora guatemalensis A.S. Mull. & Chupp (1,3). Voucher specimens were housed at Korea University herbarium (KUS). An isolate from KUS-F23757 was deposited in the Korean Agricultural Culture Collection (Accession No. KACC43980). Fungal DNA was extracted with DNeasy Plant Mini DNA Extraction Kits (Qiagen Inc., Valencia, CA). The complete internal transcribed spacer (ITS) region of rDNA was amplified with the primers ITS1/ITS4 and sequenced. The resulting sequence of 548 bp was deposited in GenBank (Accession No. JQ995781). This showed >99% similarity with sequences of many Cercospora species, indicating their close phylogenetic relationship. Isolate of KACC43980 was used in the pathogenicity tests. Hyphal suspensions were prepared by grinding 3-week-old colonies grown on PDA with distilled water using a mortar and pestle. Five plants were inoculated with hyphal suspensions and five plants were sprayed with sterile distilled water. The plants were covered with plastic bags to maintain a relative humidity of 100% for 24 h and then transferred to a 25 ± 2°C greenhouse with a 12-h photoperiod. Typical symptoms of necrotic spots appeared on the inoculated leaves 6 days after inoculation, and were identical to the ones observed in the field. C. guatemalensis was reisolated from symptomatic leaf tissues, confirming Koch's postulates. No symptoms were observed on control plants. Previously, the disease was reported in Malawi, India, China, and Japan (2,3), but not in Korea. To our knowledge, this is the first report of C. guatemalensis on sweet basil in Korea. Since farming of sweet basil has recently started on a commercial scale in Korea, the disease poses a serious threat to safe production of this herb, especially in organic farming. References: (1) C. Chupp. A Monograph of the Fungus Genus Cercospora. Ithaca, NY, 1953. (2) D. F. Farr and A. Y. Rossman. Fungal Databases. Systematic Mycology & Microbiology Laboratory, ARS, USDA. Retrieved from http://nt.ars-grin.gov/fungaldatabases/ , May 5, 2012. (3) J. Nishikawa et al. J. Gen. Plant Pathol. 68:46, 2002.


Plant Disease ◽  
2007 ◽  
Vol 91 (11) ◽  
pp. 1515-1515 ◽  
Author(s):  
A. Garibaldi ◽  
G. Gilardi ◽  
D. Bertetti ◽  
M. L. Gullino

In the winter of 2007 in Piedmont (northern Italy), symptoms of a previously unknown disease were observed on beet (Beta vulgaris L. subsp. vulgaris) (garden beet group) grown under a tunnel on several commercial farms near Cuneo. First symptoms appeared on 1-month-old plants, occurring as brown, round-to-oval spots as much as 2 cm in diameter with dark concentric rings near the perimeter. Small, dark pycnidia were present throughout the spots in concentric rings. Generally, older, lower leaves were affected more than the younger ones. Ten to fifteen percent of the plants were affected. Symptoms on the roots began near the crown as small, dark, sunken spots that became soft and water soaked. Eventually, spots on the roots turned dark brown to black and black lines separated diseased and healthy tissues. Older infected tissues were black, dry, shrunken, and spongy. Pycnidia were not observed on affected roots. From infected leaves and roots, a fungus was consistently isolated on potato dextrose agar (PDA) amended with 25 mg/l of streptomycin. The fungus was grown on PDA and maintained at 22°C (12 h of light, 12 h of dark). After 10 days, black pycnidia (130 to 328 [204] μm in diameter) developed, releasing abundant hyaline, elliptical, nonseptate conidia measuring 3.9 to 6.7 (5.1) × 2.4 to 5.9 (3.6) μm. On the basis of its morphological characteristics, the fungus was identified as a Phoma sp. (1). The internal transcribed spacer (ITS) region was amplified using primers ITS4/ITS6 (2) and sequenced. BLASTn analysis of the 557 bp obtained showed an E-value of 0.0 with Phoma betae. The nucleotide sequence has been assigned GenBank Accession No. EU003450. Pathogenicity tests were performed by spraying leaves of healthy 20-day-old potted B. vulgaris plants with a spore and mycelial suspension (1 × 106 spores or mycelial fragments per ml). Noninoculated plants sprayed only with water served as controls. Fifteen plants (three per pot) were used for each treatment. Plants were covered with plastic bags for 5 days after inoculation and kept in a growth chamber at 20°C. Symptoms previously described developed on leaves of all inoculated plants 5 days after inoculation, while control plants remained healthy. Later, pycnidia and conidia, with the same dimensions and characteristics previously described, were observed on the infected leaves. The fungus was consistently reisolated from the lesions of the inoculated plants. The pathogenicity test was carried out twice. P. betae on B. vulgaris var. cycla has been reported in Canada (3) as well as in other countries. The same pathogen was reported in Italy on sugar beet (2). References: (1) G. H. Boerema and G. J. Bollen. Persoonia 8:111, 1975. (2) A. Canova. Inf. Fitopatol. 16:207, 1966. (3) D. E L. Cooke and J. M. Duncan. Mycol. Res. 101:667, 1997. (4) J. R. Howard et al. Diseases of Vegetable Crops in Canada. Canadian Phytopathological Society, 1994.


Plant Disease ◽  
2014 ◽  
Vol 98 (6) ◽  
pp. 854-854 ◽  
Author(s):  
B.-J. Li ◽  
H.-Y. Ben ◽  
Y.-X. Shi ◽  
X.-W. Xie ◽  
A.-L. Chai

Zantedeschia aethiopica (L.) Spreng. (calla lily), belonging to family Araceae, is a popular ornamental plant in China. In the summer of 2010, leaves of calla lily with typical symptoms of necrotic lesions were observed in a commercial glasshouse in Beijing, China (116°20′ E, 39°44′ N). The initial symptoms were circular to subcircular, 1 to 3 mm, and dark brown lesions on the leaf lamina. Under high humidity, lesions expanded rapidly to 5 to 10 mm with distinct concentric zones and produced black sporodochia, especially on the backs of leaves. Later, the infected leaves were developing a combination of leaf lesions, yellowing, and falling off; as a result, the aesthetic value of the plant was significantly impacted. Leaf samples were used in pathogen isolation. Symptomatic leaf tissues were cut into small pieces and surface sterilized with 70% ethanol for 30 s and then in 0.1% mercuric chloride solution for 1 to 3 min. After being washed in sterile distilled water three times, the pieces were plated on potato dextrose agar (PDA) and incubated at 25°C in darkness for 7 days (5). Initial colonies of isolates were white, floccose mycelium and developed dark green to black concentric rings that were sporodochia bearing viscid spore masses after incubating 5 days. Conidiophores branched repeatedly. Conidiogenous cells were hyaline, clavate, and 10.0 to 16.0 × 1.4 to 2.0 μm. Conidia were hyaline, cylindrical, both rounded ends, and 6.0 to 8.2 × 1.9 to 2.4 μm. Morphological characteristics of the fungus were consistent with the description of Myrothecium roridum Tode ex Fr. (3,4). To confirm the pathogenicity, three healthy plants of calla lily were inoculated with a conidial suspension (1 × 106 conidia per ml) brushed from a 7-day-old culture of the fungus. Control plants were sprayed with sterile water. The inoculated plants were individual with clear plastic bags and placed in a glass cabinet at 25°C. After 7 days, all inoculated leaves developed symptoms similar to the original samples, but control plants remained disease free. Re-isolation and identification confirmed Koch's postulates. For molecular identification, genomic DNA of a representative isolate (MTL07081001) was extracted by modified CTAB method (1), and the rDNA-ITS region was amplified by using primers ITS1 (5-TCCGTAGGTGAACCTGCGG-3) and ITS4 (5-TCCTCCGCTTATTGATATGC-3). The 465-bp amplicon (GenBank Accession No. KF761293) was 100% identity to the sequence of M. roridum (JF724158.1) from GenBank. M. roridum has an extensive host range, covering 294 host plants (2). To our knowledge, this is the first record of leaf spot caused by M. roridum on calla lily in China. References: (1) F. M. Ausubel et al. Current Protocols in Molecular Biology. John Wiley & Sons Inc, New York, 1994. (2) D. F. Farr and A. Y. Rossman, Fungal Databases. Syst. Mycol. Microbiol. Lab., ARS, USDA. Retrieved from http://nt.ars-grin.gov/fungaldatabases/ , October 2013. (3) M. T. Mmbaga et al. Plant Dis. 94:1266, 2010. (4) Y. X. Zhang et al. Plant Dis. 95:1030, 2011. (5) L. Zhu et al. J. Phytopathol. 161:59, 2013.


Plant Disease ◽  
2020 ◽  
Vol 104 (7) ◽  
pp. 1900-1907
Author(s):  
Longhai Xue ◽  
Yong Liu ◽  
Su Zhou ◽  
James F. White ◽  
Chunjie Li

Drechslera leaf spot (DLS) caused by Pyrenophora (Drechslera) species is one of the most serious diseases affecting Italian ryegrass (Lolium multiflorum) in China. Between 2015 and 2018, this disease was observed in three Italian ryegrass fields in the province of Sichuan, China. Average leaf disease incidence was approximately 1 to 12% but could range up to 100%. Symptoms appeared as brown or tan spots surrounded by a yellow halo, or brown to dark brown net blotch; subsequently, spots increased in number and size, and they later covered a large area of leaf, eventually causing leaf death. In this study, 86 strains of Pyrenophora fungi were isolated from leaf lesions of Italian ryegrass. Coupled with phylogenetic analysis of the internal transcribed spacer region, partial 28S ribosomal RNA gene, and glyceraldehyde-3-phosphate dehydrogenase gene, morphological characteristics showed that Pyrenophora dictyoides and P. nobleae are associated with Italian ryegrass in southwest China. Pathogenicity tests confirmed that both species can infect Italian ryegrass, causing leaf spot, whereas the virulence of the two species differed; P. nobleae showed lower pathogenicity to Italian ryegrass. This is the first time that these two Pyrenophora species were formally reported on Italian ryegrass based on both morphological and molecular characters. Overall, this study improves knowledge of the Pyrenophora species associated with Italian ryegrass and provides a foundation for control of this disease in the future.


Plant Disease ◽  
2013 ◽  
Vol 97 (5) ◽  
pp. 690-690
Author(s):  
Q.-L. Li ◽  
S.-P. Huang ◽  
T.-X. Guo ◽  
Z.-B. Pan ◽  
J.-Y. Mo ◽  
...  

Baphicacanthus cusia is a perennial herbaceous plant in the family Acanthaceae that is native to China, where it grows in warm temperate mountainous or hilly regions. It is commonly used as a Chinese herbal medicine. In March 2012, symptoms of leaf spot were observed on leaves of B. cusia in Long'an County, Guangxi, China, where this plant is extensively cultivated. Symptoms were initially small brown dots which developed into irregular to circular leaf spots. These spots enlarged and overlapped, extending until the 7- to 9-cm-long and 3- to 4-cm-wide leaves withered entirely, mostly within 2 months. On potato dextrose agar (PDA), the same fungus was cultured from 92% of 75 symptomatic leaf samples that had been surface sterilized in a 45-second dip in 0.1% mercuric chloride. Fungal structures were observed on diseased leaves: conidiophores (85 to 460 × 4 to 8 μm) were erect, brown, single or in clusters, and conidia (36 to 90 × 5 to 16 μm) were single or in chains of two to four, brown, cylindrical or obclavate, straight or slightly curved, with 3 to 18 pseudosepta and a conspicuous hilum. Three single-spore isolates were identified as Corynespora cassiicola (Berk & Curt.) Wei based on morphological and cultural characteristics (1). The rDNA internal transcribed spacer (ITS) region of one isolate, ZY-1, was sequenced (GenBank Accession No. JX908713), and it showed 100% identity to C. cassiicola, GenBank FJ852716, an isolate from Micronesia cultured from Ipomoea batatas (2). Pathogenicity tests were performed with each of the three isolates by spraying conidial suspensions (5 × 104 conidia/ml) containing 0.1% Tween 20 onto the surfaces of leaves of 60-day-old, 20-cm tall plants. For each isolate, 30 leaves from five replicate plants were treated. Control plants were treated with sterilized water containing 0.1% Tween 20. All plants were incubated for 36 h at 25°C and 90% relative humidity in an artificial climate chamber, and then moved into a greenhouse. Seven days after inoculation, dark brown spots typical of field symptoms were observed on all inoculated leaves, but no symptoms were seen on water-treated control plants. Koch's postulates were fulfilled by reisolation of C. cassiicola from diseased leaves. To our knowledge, this is the first report of C. cassiicola infecting B. cusia worldwide. References: (1) M. B. Ellis. Dematiaceous Hyphomycetes. Commonwealth Mycological Institute: Kew, Surrey, England, 1971. (2) L. J. Dixon et al. Phytopathology 99:1015, 2009.


Sign in / Sign up

Export Citation Format

Share Document