scholarly journals Occurrence of Stem Blight and Fruit Rot Caused by Phytophthora capsici on Chinese Cucumber (Trichosanthes kirilowii) in China

Plant Disease ◽  
2021 ◽  
Vol 105 (1) ◽  
pp. 232
Author(s):  
W. Zhao ◽  
W. W. Li ◽  
Y. K. Chi ◽  
S. Cao ◽  
L. Dong ◽  
...  
2015 ◽  
Vol 105 (1) ◽  
pp. 110-118 ◽  
Author(s):  
R. P. Naegele ◽  
A. J. Tomlinson ◽  
M. K. Hausbeck

Pepper is the third most important solanaceous crop in the United States and fourth most important worldwide. To identify sources of resistance for commercial breeding, 170 pepper genotypes from five continents and 45 countries were evaluated for Phytophthora fruit rot resistance using two isolates of Phytophthora capsici. Genetic diversity and population structure were assessed on a subset of 157 genotypes using 23 polymorphic simple sequence repeats. Partial resistance and isolate-specific interactions were identified in the population at both 3 and 5 days postinoculation (dpi). Plant introductions (PIs) 640833 and 566811 were the most resistant lines evaluated at 5 dpi to isolates 12889 and OP97, with mean lesion areas less than Criollo de Morelos. Genetic diversity was moderate (0.44) in the population. The program STRUCTURE inferred four genetic clusters with moderate to very great differentiation among clusters. Most lines evaluated were susceptible or moderately susceptible at 5 dpi, and no lines evaluated were completely resistant to Phytophthora fruit rot. Significant population structure was detected when pepper varieties were grouped by predefined categories of disease resistance, continent, and country of origin. Moderately resistant or resistant PIs to both isolates of P. capsici at 5 dpi were in genetic clusters one and two.


1969 ◽  
Vol 13 (2) ◽  
pp. 35-57
Author(s):  
J. A. B. Nolla

1. A serious disease of eggplants known in Porto Rico as "lunares de la hoja y tallo" and "podredumhre de la fruta", in the United States of North America as leaf blight, foot-rot, leaf-spot, stem-blight. fruit-rot, eggplant-blight and seedling-stem-blight and in Cuba as "mancha de la hoja" and "enfermedad del tallo" exists in Porto Rico. 2. All varieties of eggplant are more or less equally susceptible under Porto Rican conditions. Color of plant or of fruit has no bearing on susceptibility or resistance. 3. The disease usually brings a loss of 50 per cent or over of the crop. 4. The symptoms of the disease appear on all above-ground parts of the plant. A seedling blight, stem and petiole cankers, spots on leaf blades, fruit stalks and calices and a rotting of the young and mature fruit are produced. 5. The fungus may occur inside the seed. 6. The pathogene responsible for the malady is Phomopsis vexans (Sacc. & Sydow) Harter. 7. Variations of the fungus as have been observed elsewhere do not appear to occur in the fungus in Porto Rico. 8. The size of the pyenidiospores ranges from 5 to 8 microns in length to 1.3 to 3 microns in width. 9. The germ tube of a germinating spore may either enter through a stoma, enter through a wound or force its penetration through the cuticle. 10. Secondary cycles repeatedly occur in fields. 11. The fungus is capable of a saprophytic existence. 12. The prevailing temperature in Porto Rico seems adequate for spore germination. 13. Moisture is a very important factor in outbreaks of the disease. 14. The disease is probably controlled by a three- or four-years rotation. 15. Plants with the symptoms of the disease should be promptly removed from fields. 16. Although seed treatment is beneficial it never completely eliminates the pathogene. 17. Clean seed from unaffected fruit should be demanded. 18. Infested soils should be avoided in preparing seedbeds. 19. Inoculated soils can he rendered safe for seedlings if drenched with a 1-50 formaldehyde solution at the rate of one-half gallon per square foot of soil surface. An application of 4-4-50 Bordeaux mixture is highly beneficial but the formaldehyde treatment is to be preferred. The latter treatment will cost about two-thirds of one cent per seedling. 20. Bordeaux mixture (4-4-50) is quite effective in preventing seedling blight. The treatment is too expensive and therefore inapplicable under ordinary conditions. Bordeaux mixture may be of practical application where labor cost is reduced. The safest and cheapest control measure is to grow healthy seedlings and set them on in uninfested soils.


2017 ◽  
Vol 18 (1) ◽  
pp. 28-34 ◽  
Author(s):  
Chandrasekar (Shaker) S. Kousik ◽  
Pingsheng Ji ◽  
Daniel S. Egel ◽  
Lina M. Quesada-Ocampo

About 50% of the watermelons in the United States are produced in the southeastern states, where optimal conditions for development of Phytophthora fruit rot prevail. Phytophthora fruit rot significantly limits watermelon production by causing serious yield losses before and after fruit harvest. Efficacy of fungicide rotation programs and Melcast-scheduled sprays for managing Phytophthora fruit rot was determined by conducting experiments in Phytophthora capsici-infested fields at three locations in southeastern United States (North Carolina, South Carolina, and Georgia). The mini seedless cultivar Wonder and seeded cultivar Mickey Lee (pollenizer) were used. Five weekly applications of fungicides were made at all locations. Significant fruit rot (53 to 91%, mean 68%) was observed in the nontreated control plots in all three years (2013 to 2015) and across locations. All fungicide rotation programs significantly reduced Phytophthora fruit rot compared with nontreated controls. Overall, the rotation of Zampro alternated with Orondis was highly effective across three locations and two years. Rotations of Actigard followed by Ranman+Ridomil Gold, Presidio, V-10208, and Orondis, or rotation of Revus alternated with Presidio were similarly effective. Use of Melcast, a melon disease-forecasting tool, may occasionally enable savings of one spray application without significantly impacting control. Although many fungicides are available for use in rotations, under very heavy rain and pathogen pressure, the fungicides alone may not offer adequate protection; therefore, an integrated approach should be used with other management options including well-drained fields.


Plant Disease ◽  
2001 ◽  
Vol 85 (1) ◽  
pp. 53-58 ◽  
Author(s):  
Anthony P. Keinath

Yield and quality reductions in watermelon infected with Didymella bryoniae may be attributed to reduced number or weight of fruit, sunburned fruit, fruit rot, or low sugar content due to gummy stem blight on foliage and black rot on fruit. Number, weight, soluble solids content, and external appearance of fruit were determined in four experiments conducted in fall 1996 and 1997 and spring 1997 and 1998. Severity of gummy stem blight was varied by applying no fungicide, mancozeb, or chlorothalonil according to different schedules. In the fall, when disease severity was high, total fruit weight, percent marketable fruit, and soluble solids content were lower and percent fruit with black rot was higher in nonsprayed than in sprayed treatments. Fungicide applications did not affect total fruit weight, soluble solids content, or black rot in the spring, when disease severity was moderate to low. Percent sunburned fruit was greater in treatments sprayed every 14 days than in those sprayed weekly. In fall experiments, the number of healthy, unblemished fruit increased linearly as the number of fungicide applications was increased from zero to nine per season. Yield losses in watermelon to gummy stem blight and black rot resulted primarily from a reduction in total fruit weight and an increase in number of diseased and sunburned fruit.


2015 ◽  
Vol 16 (2) ◽  
pp. 93-94 ◽  
Author(s):  
Chandrasekar S. Kousik ◽  
Camilo Parada ◽  
Lina Quesada-Ocampo

Luffa sponge (smooth gourd) and bitter gourds (bitter melon) are specialty vegetables grown in the U.S. on a small scale for select markets. Luffa gourds are also grown for sponges. In Sept. 2014, heavy rainfall resulted in rot of >50% of bitter gourd and >25% on sponge gourd in a field in Charleston, SC. The microbe causing the fruit rot was identified using microscopy and molecular tools. Prior to this study it was not known if this microbe could cause fruit rot of bitter gourd. This knowledge will be useful to suggest management strategies. Accepted for publication 17 March 2015. Published 6 May 2015.


HortScience ◽  
2016 ◽  
Vol 51 (10) ◽  
pp. 1251-1255 ◽  
Author(s):  
Charles S. Krasnow ◽  
Mary K. Hausbeck

Phytophthora capsici annually threatens production of cucurbit and solanaceous crops. Long-lived oospores produced by the pathogen incite primary infection of susceptible plants when conditions are wet. Limiting the rot of winter squash and pumpkin (Cucurbita sp.) fruits is difficult due to the long maturation period when fruits are often in direct contact with infested soil. Genetic resistance to fruit rot is not widely available within Cucurbita sp.; however, age-related resistance (ARR) to P. capsici fruit rot develops in specific cultivars during maturation. The objective of this study was to evaluate the fruits of 12 cultivars of Cucurbita pepo, Cucurbita moschata, and Cucurbita maxima for ARR to P. capsici using a mycelial-plug inoculation method. All Cucurbita pepo and Cucurbita moschata cultivars displayed ARR; 7 days postpollination (dpp) fruits were susceptible, limited lesion development occurred on fruits 22 dpp, and lesions did not develop at 56 dpp. Disease developed on both Cucurbita maxima cultivars tested at 7, 14, 22, and 56 dpp. Firmness of fruit exocarps was measured with a manual penetrometer. Exocarp firmness of all cultivars increased during maturation; however, there was no correlation between firmness and disease incidence among cultivars at 22 dpp (R2 = −0.01, P = 0.85). When fruits of cultivars expressing ARR at 22 dpp were wounded before inoculation, fruit rot developed.


Plant Disease ◽  
2014 ◽  
Vol 98 (7) ◽  
pp. 885-890 ◽  
Author(s):  
R. P. Naegele ◽  
M. K. Hausbeck

Phytophthora capsici causes fruit, root, and foliar blight on pepper (Capsicum annuum) in field production. Breeding for disease-resistant commercial pepper cultivars is essential to long-term management of P. capsici. In this study, the severity of Phytophthora fruit rot was evaluated in an F6 recombinant inbred line population between CM334, a landrace from Mexico, and the commercial ‘Early Jalapeño’. The two parents and 67 progeny lines were evaluated for fruit rot resistance at 3 and 5 days post inoculation (dpi) using three P. capsici isolates. Fruit shape was also evaluated for each line, and the correlation between shape and disease symptoms was investigated. Significant differences were detected among lines in lesion area measured 3 and 5 dpi, and in phenotypic traits (fruit length, width, and shape index). Of the fruit phenotypic traits measured, only fruit shape index had a significant, albeit weak (r = 0.2892, P = 0.02), correlation with lesion area when inoculated, and with only one of the three isolates of P. capsici evaluated. These results suggest that breeding for fruit rot resistance in pepper will have minimal linkage with fruit shape in the CM334 background.


Plant Disease ◽  
2010 ◽  
Vol 94 (1) ◽  
pp. 24-30 ◽  
Author(s):  
J. M. Foster ◽  
M. K. Hausbeck

Greenhouse and laboratory experiments were conducted to determine the virulence of four Phytophthora capsici isolates from Michigan to 31 bell and hot pepper cultivars and breeding lines. Resistance to crown and root rot was assessed following the inoculation of soilless media with P. capsici–infested millet seed. In a detached fruit assay, fruit rot resistance was evaluated following inoculation with zoospore suspensions of 1.75 × 106 zoospores/ml. The four isolates differed in virulence to pepper lines screened for crown and root rot resistance and were considered to be four different physiological races. The pepper lines CM334, NY07-8001, NY07-8006, and NY07-8007 were resistant to the isolates tested. None of the commercial cultivars were resistant to P. capsici isolate 12889, but several cultivars were resistant to the other isolates screened. The isolates varied in their ability to cause infection on the fruits of the different cultivars. Overall, pepper fruit were more susceptible to P. capsici than the roots and crowns. Management of Phytophthora crown and root rot of pepper can be improved through the use of resistant cultivars. However, since isolate virulence affects resistance, cultivar resistance will need to be utilized on a local scale accordingly.


Plant Disease ◽  
2017 ◽  
Vol 101 (1) ◽  
pp. 259 ◽  
Author(s):  
E. A. Barboza ◽  
M. E. N. Fonseca ◽  
L. S. Boiteux ◽  
A. Reis

Plant Disease ◽  
2000 ◽  
Vol 84 (12) ◽  
pp. 1345-1345 ◽  
Author(s):  
M. Babadoost

Approximately 65% of the total commercial processing pumpkins (Cucurbita moschata Poir.) in the United States are produced in central Illinois. In 1999, Phytophthora capsici caused severe foliar blight and fruit rot in processing pumpkin fields in Illinois. Infection was widely observed in July when fruit weights were approximately 5 kg and continued until harvest in late August. Infection of the fruit generally started on the side contacting the soil. However, when an infected leaf came in contact with a fruit, fruit rot started at the site of contact. Many fruits that looked normal fell apart when they were turned for examination. Infected fruit were generally covered with white, cottony growth consisting of mycelium, sporangiophores, and sporangia. Leaf infection began as small chlorotic lesions, which enlarged and became necrotic. Leaf petioles also were infected and developed lesions that girdled petioles, causing the collapse and death of leaves. Vines also were infected and developed girdling lesions. The girdling lesions, which caused collapse and death of the vines, were observed on all parts of the vines. Affected vines collapsed and died. Roots and crowns of the plants with foliar blight and fruit rot exhibited little brownish discoloration or no symptoms. In most fields, the disease started in low-lying areas but spread rapidly throughout the field. The disease occurred in both irrigated and nonirrigated fields. In August, approximately 1 week before harvest, one nonirrigated and eight irrigated fields, a total of 267 ha, were surveyed to assess the incidence of disease. The incidence of disease was determined by examining vines, leaves, and fruit in 10 plots (36 m2 each) per field by walking a path on the longest diagonal of each field. In each plot, 10 plants were inspected, with one vine, 10 leaves on the vine, and one fruit of each plant (total of 10 vines, 100 leaves, and 10 fruits in each plot) were examined for infection. The incidence of vine blight, leaf blight, and fruit rot in the nonirrigated field was 30, 50, and 49%, respectively. The incidence of vine blight, leaf blight, and fruit rot in irrigated fields ranged from 4 to 48% (average 21%), 17 to 68% (average 40%), and 4 to 71% (average 32%), respectively. The incidence of vine blight, leaf blight, and fruit rot were highly correlated. Due to severe fruit rot, two of the irrigated fields were not harvested. In Illinois, processing pumpkins are planted in May and harvested in August. Recorded precipitation in the pumpkin growing area in Illinois in 1999, was 9 days (211 mm), 7 days (113 mm), 7 days (147 mm), and 7 days (91 mm) in May, June, July, and August, respectively. It is believed that the frequent and high rainfall during the growing season in the area resulted in the outbreak of Phytophthora foliar and fruit rot in processing pumpkins in Illinois in 1999. References: (1) D. C. Erwin and O. K. Ribeiro. 1996. Phytophthora Diseases Worldwide. The American Phytopathological Society, St. Paul, MN. (2) M. T. McGrath. 1998. Biological and Cultural Tests. The American Phytopathological Society, St. Paul, MN.


Sign in / Sign up

Export Citation Format

Share Document