scholarly journals Bacterial canker of tomato: revisiting a global and economically damaging seedborne pathogen

Plant Disease ◽  
2020 ◽  
Author(s):  
F. Christopher Peritore-Galve ◽  
Matthew A. Tancos ◽  
Christine D. Smart

The Gram-positive actinobacterium Clavibacter michiganensis is the causal agent of bacterial canker of tomato, an economically impactful disease with a worldwide distribution. This seedborne pathogen systemically colonizes tomato xylem leading to unilateral leaflet wilt, marginal leaf necrosis, stem and petiole cankers, and plant death. Additionally, splash dispersal of the bacterium onto fruit exteriors causes bird’s-eye lesions, which are characterized as necrotic centers surrounded by white halos. The pathogen can colonize developing seeds systemically through xylem and through penetration of fruit tissues from the exterior. There are currently no commercially available resistant cultivars, and bactericidal sprays have limited efficacy for managing the disease once the pathogen is in the vascular system. In this review we summarize research on epidemiology, host colonization, the bacterial genetics underlying virulence, and management of bacterial canker. Finally, we highlight important areas of research into this pathosystem that have the potential to generate new strategies for prevention and mitigation of bacterial canker.

2008 ◽  
Vol 69 (1) ◽  
pp. 125-134 ◽  
Author(s):  
Czesław Ślusarski

Attempts at Biological Control ofClavibacter michiganensissubsp.michiganensisOn Rockwool-Grown Greenhouse TomatoesTwo greenhouse experiments were conducted in which tomato plants artificially inoculated withClavibacter michiganensissubsp.michiganensis(Cmm) were grown in an open rockwool system as spring and autumn crops. Two isolates of the rhizosphere bacteria,Pseudomonas fluorescensstrain PSR21,Pseudomonas reactansstrain GGS14, a commercial biocontrol agent Aqua Bac Plus (Bacillusspp.) and a proprietary disinfectant containing QAC+Chx, applied at weekly intervals, were evaluated for their efficiency in the suppression of the bacterial canker of tomato. All treatments tested revealed to be ineffective in controlling the disease. The introduction ofCmmbacteria into the fresh rockwool in the first year of its usage resulted in a 100% death of tomato plants, whereas following an artificial inoculation of two- and three-year-old rockwool slabs withCmmbacteria dead plants amounted to 70 and 58%, respectively. This indicates that in the re-used rockwool a natural microbial suppressiveness to bacterial canker of tomato might be developed in the root zone.


Plant Disease ◽  
2008 ◽  
Vol 92 (4) ◽  
pp. 649-649 ◽  
Author(s):  
R. Ftayeh ◽  
A. von Tiedemann ◽  
B. Koopmann ◽  
K. Rudolph ◽  
M. Abu-Ghorrah

Between March and mid April of 2007, several extensive surveys for Clavibacter michiganensis subsp. michiganensis were carried out among greenhouses in the coastal strip provinces of the Mediterranean Sea in north-west Syria (Latakia and Tartous), where a large proportion of Syrian fresh-market tomatoes are produced. This bacterium causes bacterial canker of tomato and is considered an A2 quarantine pathogen by the European Plant Protection Organization (EPPO). It is currently present in all major tomato-production areas in the EPPO region (4), but has not been previously reported in Syria. The survey revealed typical canker symptoms in 7% of 150 inspected greenhouses that contained cvs. Dima, Huda, and Astona. These symptoms included stunting, dark brown-to-black lesions on the leaf margins, wilting and defoliation of whole plants, and vascular discoloration. The disease incidence in such greenhouses was estimated at 15% at the time of the survey. Diseased plants were surface sterilized and homogenized in sterile water. Serial dilutions were plated on nutrient glucose agar. Suspected colonies were further purified by repeated restreaking on new agar plates. All 10 of the suspected strains obtained from different locations were identified as C. michiganensis subsp. michiganensis on the basis of the following observations: bacterial cells of all strains had a coryneform shape, were nonmotile, gram positive according to Gram's reaction test with 3% KOH (2), oxidase-negative, and caused hypersensitive reactions on leaves of Mirabilis jalaba (1) within 24 h. PCR assays were conducted with the C. michiganensis subsp. michiganensis-specific primer set PSA-4/R (3) and template DNA prepared from in-vitro-grown bacteria with the MasterPure Gram Positive DNA Purification Kit (Epicentre Biotechnologies, Madison, WI). The expected 270-bp amplicon was observed for both reference strains as well as the Syrian strains. Pathogenicity of the strains was confirmed by artificial inoculation of 6-week-old tomato plants (Lycopersicon esculentum Mill. cv. Lyconorma). Inoculation was performed by stabbing the stem with a sterile needle through a drop (~35 μl) of bacterial suspension (~108 CFU/ml in 0.01 M MgSO4) placed in the axil of the second or third true leaf. Three tomato seedlings were inoculated with each strain. Control plants were inoculated with sterile 0.01 M MgSO4. Symptoms including lateral wilt of leaflets, stem lesions, and wilting of whole plants were observed within 10 to 15 days after inoculation, except for the negative control. To fulfill Koch's postulates, reisolation and reidentification of the pathogen was conducted as previously described. To our knowledge, this is the first record of the occurrence of bacterial canker of tomato in Syria. References: (1) R. D. Gitaitis. Plant Dis. 74:58, 1990. (2) T. J. Gregersen. Appl. Microbiol. Biotechnol. 5:123, 1978. (3) K. H. Pastrik and F. A. Rainey. J. Phytopathol. 147:687, 1999. (4) I. M. Smith and L. M. F. Charles, eds. Map 253 in: Distribution Maps of Quarantine Pests for Europe. EPPO/CABI, 1998.


Author(s):  
I.N. Pisareva ◽  
◽  
O.Yu. Slovareva ◽  

The study is devoted to the diagnosis of bacterial canker of tomato (Cmm). The method of sampling and plant sample preparation has been adapted. PCR recommended by the international diagnostic protocol and other sources have been tested. The use of methods made it possible to identify Cmm in plant material


Plant Disease ◽  
2004 ◽  
Vol 88 (6) ◽  
pp. 680-680 ◽  
Author(s):  
A. Anwar ◽  
P. S. van der Zouwen ◽  
S. Ilyas ◽  
J. M. van der Wolf

In 2002, Clavibacter michiganensis subsp. michiganensis (Smith) Davis, the causal organism of bacterial canker of tomato (Lycopersicon esculentum), was isolated from two of six commercial asymptomatic tomato seed lots produced on Java in Indonesia. C. michiganensis subsp. michiganensis has not been reported in Indonesia previously. Methods based on the protocol of the International Seed Health Initiative were used to extract and identify the presence of C. michiganensis subsp. michiganensis in tomato seed. C. michiganensis subsp. michiganensis was isolated with dilution plating on the semiselective media D2ANX and mSCM. The identity of the colonies was confirmed by immunofluorescence microscopy, polymerase chain reaction (2), fatty methyl ester analysis, enzyme-linked immunosorbent assay based on monoclonal antibody 103 (1), and a pathogenicity test in which three replicate tomato plants were stem inoculated with 108 cells ml-1. Within 2 weeks, stripes on stems developed that split and exposed reddish brown cavities (stem cankers). The presence of C. michiganensis subsp. michiganensis poses a direct threat on tomato production, which is one of five economically most important vegetable crops in Indonesia. References: (1) A. Alvarez et al. Phytopathology 83:1405, 1993. (2) M. S. Santos et al. Seed Sci. Technol. 25:581, 1997.


2011 ◽  
Vol 101 (11) ◽  
pp. 1355-1364 ◽  
Author(s):  
Radwan M. Ftayeh ◽  
Andreas von Tiedemann ◽  
Klaus W. E. Rudolph

A new selective and highly sensitive medium was developed for isolation of Clavibacter michiganensis subsp. michiganensis (Cmm), the causal agent of bacterial canker of tomato, from seed and latently infected plants. The new medium (BCT) proved to be superior to all published semiselective media for Cmm and is denoted as selective medium because of (i) its mean plating efficiency, amounting to ≤89% within 7 days for all 30 Cmm strains from different sources tested; (ii) the high selectivity, because accompanying bacterial species occurring on tomato plants and seed or bacteria obtained from culture collections were inhibited to an extent of 98 to 100%; and (iii) the remarkable detection sensitivity. Thus, 8 CFU of Cmm in field plant homogenates containing 12,750 CFU of accompanying saprophytes were detected on BCT. Under these extreme conditions, all of the published semiselective media (D2, KBT, D2ANX, SCM, mSCM, CMM1, mCNS, and EPPO) gave false-negative results. Either some media were rather toxic and Cmm growth was also inhibited or the other, less toxic media allowed growth of high numbers of saprophytes, so that Cmm growth was suppressed. Exclusively, BCT also supported growth of the closely related C. michiganensis subsp. insidiosus, nebraskensis, and tessellarius. The new medium is recommended for Cmm detection in tomato seed, and in symptomless tomato plantlets, to improve disease control of bacterial canker of tomato.


Plant Disease ◽  
2015 ◽  
Vol 99 (1) ◽  
pp. 4-13 ◽  
Author(s):  
Yusuf Sen ◽  
Jan van der Wolf ◽  
Richard G. F. Visser ◽  
Sjaak van Heusden

Clavibacter michiganensis subsp. michiganensis is the causal agent of bacterial canker of tomato. The disease was first described in 1910 in Michigan, USA. C. michiganensis subsp. michiganensis (from now on called clavibacter) was initially thought to be a phloem parasite, but was later found to be a xylem-invading bacterium. The host range comprises mainly solanaceous crops such as tomato, pepper, and eggplant. Strains show great variability in virulence and are usually described as being hypervirulent, hypovirulent, or nonvirulent. Clavibacter lacks a type III secretion system, and only a few virulence factors have been experimentally determined from the many putative virulence factors. As the molecular mode of infection by clavibacter is unknown, researchers have avoided intensive work on this organism. Genetic plant mechanisms conferring resistance to clavibacter are apparently complex, and breeders have yet to develop disease-resistant cultivars.


Sign in / Sign up

Export Citation Format

Share Document