scholarly journals Biological Control of Meloidogyne incognita by Spore-forming Plant Growth-promoting Rhizobacteria on Cotton

Plant Disease ◽  
2017 ◽  
Vol 101 (5) ◽  
pp. 774-784 ◽  
Author(s):  
Ni Xiang ◽  
Kathy S. Lawrence ◽  
Joseph W. Kloepper ◽  
Patricia A. Donald ◽  
John A. McInroy ◽  
...  

In the past decade, increased attention has been placed on biological control of plant-parasitic nematodes using various fungi and bacteria. The objectives of this study were to evaluate the potential of 662 plant growth-promoting rhizobacteria (PGPR) strains for mortality to Meloidogyne incognita J2 in vitro and for nematode management in greenhouse, microplot, and field trials. Results indicated that the mortality of M. incognita J2 by the PGPR strains ranged from 0 to 100% with an average of 39%. Among the PGPR strains examined, 212 of 662 strains (or 33%) caused significantly greater mortality percent of M. incognita J2 than the untreated control. Bacillus was the major genus initiating a greater mortality percentage when compared with the other genera. In subsequent trials, B. velezensis strain Bve2 reduced M. incognita eggs per gram of cotton root in the greenhouse trials at 45 days after planting (DAP) similarly to the commercial standards Abamectin and Clothianidin plus B. firmus I-1582. Bacillus mojavensis strain Bmo3, B. velezensis strain Bve2, B. subtilis subsp. subtilis strain Bsssu3, and the Mixture 2 (Abamectin + Bve2 + B. altitudinis strain Bal13) suppressed M. incognita eggs per gram of root in the microplot at 45 DAP. Bacillus velezensis strains Bve2 and Bve12 also increased seed-cotton yield in the microplot and field trials. Overall, results indicate that B. velezensis strains Bve2 and Bve12, B. mojavensis strain Bmo3, and Mixture 2 have potential to reduce M. incognita population density and to enhance growth of cotton when applied as in-furrow sprays at planting.

1998 ◽  
Vol 88 (11) ◽  
pp. 1158-1164 ◽  
Author(s):  
Georg S. Raupach ◽  
Joseph W. Kloepper

Plant growth-promoting rhizobacteria (PGPR) strains INR7 (Bacillus pumilus), GB03 (Bacillus subtilis), and ME1 (Curtobacterium flaccumfaciens) were tested singly and in combinations for biological control against multiple cucumber pathogens. Investigations under greenhouse conditions were conducted with three cucumber pathogens—Colletotrichum orbiculare (causing anthracnose), Pseudomonas syringae pv. lachrymans (causing angular leaf spot), and Erwinia tracheiphila(causing cucurbit wilt disease)—inoculated singly and in all possible combinations. There was a general trend across all experiments toward greater suppression and enhanced consistency against multiple cucumber pathogens using strain mixtures. The same three PGPR strains were evaluated as seed treatments in two field trials over two seasons, and two strains, IN26 (Burkholderia gladioli) and INR7 also were tested as foliar sprays in one of the trials. In the field trials, the efficacy of induced systemic resistance activity was determined against introduced cucumber pathogens naturally spread within plots through placement of infected plants into the field to provide the pathogen inoculum. PGPR-mediated disease suppression was observed against angular leaf spot in 1996 and against a mixed infection of angular leaf spot and anthracnose in 1997. The three-way mixture of PGPR strains (INR7 plus ME1 plus GB03) as a seed treatment showed intensive plant growth promotion and disease reduction to a level statistically equivalent to the synthetic elicitor Actigard applied as a spray.


2017 ◽  
Vol 107 (8) ◽  
pp. 928-936 ◽  
Author(s):  
Ke Liu ◽  
Molli Newman ◽  
John A. McInroy ◽  
Chia-Hui Hu ◽  
Joseph W. Kloepper

A study was designed to screen individual strains of plant growth-promoting rhizobacteria (PGPR) for broad-spectrum disease suppression in vitro and in planta. In a preliminary screen, 28 of 196 strains inhibited eight different tested pathogens in vitro. In a secondary screen, these 28 strains showed broad spectrum antagonistic activity to six different genera of pathogens, and 24 of the 28 strains produced five traits reported to be related to plant growth promotion, including nitrogen fixation, phosphate solubilization, indole-3-acetic acid production, siderophore production, and biofilm formation. In advanced screens, the 28 PGPR strains selected in vitro were tested in planta for biological control of multiple plant diseases including bacterial spot of tomato caused by Xanthomonas axonopodis pv. vesicatoria, bacterial speck of tomato caused by Pseudomonas syringae pv. tomato, damping-off of pepper caused by Rhizoctonia solani, and damping-off of cucumber caused by Pythium ultimum. In all, 5 of the 28 tested strains significantly reduced three of the four tested diseases, and another 19 strains showed biological control to two tested diseases. To understand the observed broad-spectrum biocontrol capacity, antiSMASH was used to predict secondary metabolite clusters of selected strains. Multiple gene clusters encoding for secondary metabolites, e.g., bacillibactin, bacilysin, and microcin, were detected in each strain. In conclusion, selected individual PGPR strains showed broad-spectrum biocontrol activity to multiple plant diseases.


Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1167
Author(s):  
Pratima Subedi ◽  
Kaitlin Gattoni ◽  
Wenshan Liu ◽  
Kathy S. Lawrence ◽  
Sang-Wook Park

Plant-parasitic nematodes (PPN) are among the most economically and ecologically damaging pests, causing severe losses of crop production worldwide. Chemical-based nematicides have been widely used, but these may have adverse effects on human health and the environment. Hence, biological control agents (BCAs) have become an alternative option for controlling PPN, since they are environmentally friendly and cost effective. Lately, a major effort has been made to evaluate the potential of a commercial grade strain of plant growth-promoting rhizobacteria (PGPR) as BCAs, because emerging evidence has shown that PGPR can reduce PPN in infested plants through direct and/or indirect antagonistic mechanisms. Direct antagonism occurs by predation, release of antinematicidal metabolites and semiochemicals, competition for nutrients, and niche exclusion. However, the results of direct antagonism may be inconsistent due to unknown endogenous and exogenous factors that may prevent PGPR from colonizing plant’s roots. On the other hand, indirect antagonism may occur from the induced systemic resistance (ISR) that primes whole plants to better fight against various biotic and abiotic constraints, actuating faster and/or stronger defense responses (adaption), enhancing their promise as BCAs. Hence, this review will briefly revisit (i) two modes of PGPR in managing PPN, and (ii) the current working models and many benefits of ISR, in the aim of reassessing current progresses and future directions for isolating more effective BCAs and/or developing better PPN management strategy.


The Analyst ◽  
2021 ◽  
Author(s):  
Yuchen Zhang ◽  
Rachel Komorek ◽  
Jiyoung Son ◽  
Shawn Riechers ◽  
Zihua Zhu ◽  
...  

Plant growth-promoting rhizobacteria (PGPR) play a crucial role in biological control and pathogenic defense on and within plant tissues, however the mechanism(s) by which plants associate with PGPR to elicit...


Sign in / Sign up

Export Citation Format

Share Document