scholarly journals First report of pear chlorotic leaf spot-associated virus on Japanese and European pears in Japan and its detection from an eriophyid mite

Plant Disease ◽  
2020 ◽  
Author(s):  
Kenji Kubota ◽  
Yuya Chiaki ◽  
Hironobu Yanagisawa ◽  
Sawana Takeyama ◽  
Ryoji Suzuki ◽  
...  

In May 2018, three leaf samples were collected from Japanese pear trees cv. “Hosui” that exhibited typical chlorotic spot symptoms (Supplementary Figure S1) in a germplasm nursery in Tsukuba, Ibaraki. Total RNA was prepared using the rapid CTAB method (Gambino et al. 2008) for high-throughput sequencing, as described by Kubota et al. (2020). In brief, after removing ribosomal RNAs, a library was constructed by fragmenting RNA, synthesizing cDNA, and polymerase chain reaction (PCR) amplification. Sequencing was performed using NovaSeq 6000 sequencer (Illumina, San Diego, CA, U.S.A.) with paired-end 150 nt reads. De novo assembly was performed using CLC Genomics Workbench 11.0 Software (Qiagen, Hilden, Germany), with a minimum length of 500 bp. A total of 36,017 contigs derived from 33,565,182 reads were obtained and subjected to BLASTX search against the GenBank sequence database as of January 2019. Viruses commonly found in stone fruits, i.e., apple stem pitting virus, apple green crinkle-associated virus, apricot latent virus (foveaviruses), and apple stem grooving virus (a capillovirus), were detected. In addition, five contigs with amino acid sequence homologies to P1–P4 of known emaraviruses and the P7 of High Plains wheat mosaic virus (Tatineni et al. 2014) were detected and designated as PEV-Jp. The complete nucleotide (nt) sequences of the five segments of PEV-Jp were determined by Sanger sequencing of cloned reverse transcription (RT)-PCR amplification products using the primers shown in Supplementary Table S1; the 5′- and 3′-terminal sequences were RACE verified (Takara Bio, Shiga, Japan). In pairwise comparisons, the complete RNA1 to RNA5 of PEV-Jp (LC554756-760) shared 90.7% to 98.7% nt identities with those of PCLSaV-CG1 (MK602177–181), indicating that PEV-Jp is an isolate of PCLSaV. Using newly designed segment-specific primers (Supplementary Table S1), 12 symptomatic Japanese pear trees cv. “Kosui” sampled in 2020 from the same nursery tested positive for PCLSaV by RT-PCR while 12 symptomless trees were negative for the virus. Similar chlorotic spots, sometimes accompany necrotic spots, were observed on European pear (Pyrus communis) cv. “Le Lectier.” (Fig. S1F) in Niigata in 2019; PCLSaV was detected by RT-PCR in leaf tissue samples from symptomatic trees (n = 3/3) but not in symptomless trees (n = 0/2). No vector for PCLSaV has been identified (Liu et al. 2020) but acaricide sprays in the early spring are effective for preventing occurrence of chlorotic spots in pear orchards (Nakai et al. 2018). Since the infestations of Eriophyes chibaensis Kadono, an eriophyid mite often observed on the Japanese pear (Fig. S1G to S1I) (Kadono, 1981), has been associated with occurrences of the chlorotic spots (Shimizu et al. 2019), samples of E. chibaensis individuals were collected from PCLSaV-positive Japanese pear cvs. “Akizuki” and “Kosui”and P. communis cv. “Le Lectier.” for total nucleic acid isolations via phenol–chloroform extraction, followed by quantitative RT-PCR (Supplementary Table S1). The expected RNA1 and RNA5 specific 150 bp products were detected from mite samples collected from Akizuki (n = 6/12), Kosui (n = 13/18), and Le Lectier (n = 6/8). The results indicate that E. chibaensis can ingest PCLSaV and may be a potential vector for the virus, although additional experiments are needed to demonstrate its vector competency. To our knowledge, this is the first report of PCLSaV in Japan and the first report of its detection in E. chibaensis.

Plant Disease ◽  
2021 ◽  
Author(s):  
Guojun Hu ◽  
Yafeng Dong ◽  
Zunping Zhang ◽  
Xudong Fan ◽  
Fang Ren ◽  
...  

More than 30 viral and subviral pathogens infect apple (Malus domestica, an important fruit crop in China) trees and rootstocks, posing a threat to its production. With advances in diagnostic technologies, new viruses including apple rubbery wood virus 1 (ARWV-1), apple rubbery wood virus 2 (ARWV-2), apple luteovirus 1 (ALV), and citrus virus A (CiVA) have been detected (Beatriz et al. 2018; Rott et al. 2018; Hu et al. 2021). ARWV-1 (family Phenuiviridae) is a negative-sense single-stranded RNA virus with three RNA segments (large [L], medium [M], and small [S]). It causes apple rubbery wood disease (Rott et al. 2018) and is found in apple rootstocks, causing leaf yellowing and mottle symptoms in Korea (Lim et al. 2018). To determine virus prevalence in apple trees in China, 200 apple leaf and shoot samples were collected from orchards in Hebei (n = 26), Liaoning (40), Shandong (100), Yunnan (25), and Shanxi (4), and Inner Mongolia (5) in 2020. Total RNA was extracted from the shoot phloem or leaf (Hu et al., 2015) and subjected to reverse transcription (RT)-PCR to detect apple chlorotic leaf spot virus (ACLSV), apple stem pitting virus (ASPV), apple stem grooving virus (ASGV), apple necrotic mosaic virus (ApNMV), apple scar skin viroid (ASSVd), ARWV-2, ARWV-1, ALV, and CiVA, using primers specific to respective viruses (Supplementary Table 1). The prevalence of ACLSV, ASPV, ASGV, ApNMV, ASSVd, ARWV-2, ARWV-1, ALV and CiVA was found to be 75.5%, 85.5%, 86.0%, 43.0%, 4.0%, 48.5%, 10.5%, 0% and 0%, respectively (Supplementary Table 2). Among the 21 positive samples for ARWV-1, three, five and 13 samples were from Hebei, Liaoning, and Shandong, respectively. Five ARWV-1-positive samples (cultivars Xinhongjiangjun, Xiangfu-1, Xiangfu-2 and Tianhong) showed leaf mosaic symptoms. To confirm ARWV-1 by RT-PCR, amplicons from Xiangfu-1 and Tianhong were cloned into the pMD18-T vector (Takara, Dalian, China), and three clones of each sample were sequenced. BLASTn analyses demonstrated that the sequences (accession nos. MW507810–MW507811) shared 96.9%–98.9% identity with ARWV-1 sequences (MH714536, MF062127, and MF062138) in GenBank. An lncRNA library was prepared for high-throughput sequencing (HTS) with the Illumina HiSeq platform using Xiangfu-1 RNA. A total of 71,613,294 reads were obtained. De novo assembly of the reads revealed 135 viral sequence contigs of ACLSV, ASGV, ASPV, ApNMV, ARWV-1, and ARWV-2. The sequences of contig-100_88981 (302 nt) and contig-100_25701 (834 nt) (accession nos. MW507821 and MW507820) matched those of segment S from ARWV-1, whereas the sequences of contig-100_6542 (1,660 nt) and contig-100_27 (7,364 nt) (accession nos. MW507819 and MW507818) matched those of segments M and L, respectively. To confirm the HTS results, fragments of segments L (744 bp), M (747 bp), and S (554 bp) from Xiangfu-1 and Tianhong were amplified (Supplementary Table 1) and sequenced. The sequences (accession nos. MW507812–MW507817) showed 94.8%–99.9% nucleotide identity with the corresponding segments of ARWV-1. Co-infection of ARWV-1 with ApNMV and/or ARWV-2 was confirmed in 17/21 ARWV-1-positive samples. The prevalence of ARWV-1/ApNMV, ARWV-1/ARWV-2, and ARWV-1/ApNMV/ARWV-2 infections was 61.9%, 71.4%, and 52.4%, respectively. To our knowledge, this is the first report of ARWV-1 infecting apple trees in China. Further research is needed to determine whether and how ARWV-1 affects apple yield and quality.


Plant Disease ◽  
2000 ◽  
Vol 84 (2) ◽  
pp. 202-202 ◽  
Author(s):  
L. Levy ◽  
V. Damsteegt ◽  
R. Welliver

Plum pox (Sharka) is the most important virus disease of Prunus in Europe and the Mediterranean region and is caused by Plum pox potyvirus (PPV). In September 1999, PPV-like symptoms were observed in peach fruit culls in a packinghouse in Pennsylvania. All symptomatic fruit originated from a single block of peach (P. persica cv. Encore) in Adams County. Trees in the block exhibited ring pattern symptoms on their leaves. A potyvirus was detected in symptomatic fruit using the Poty-Group enzyme-linked immunosorbent assay (ELISA) test from Agdia (Elkhart, IN). Reactions for symptomatic peach fruit and leaves also were positive using triple-antibody sandwich ELISA with the PPV polyclonal antibody from Bioreba (Carrboro, NC) for coating, the Poty-Group monoclonal antibody (MAb; Agdia) as the intermediate antibody, and double-antibody sandwich ELISA with PPV detection kits from Sanofi (Sanofi Diagnostics Pasteur, Marnes-La-Coquette, France) and Agdia and the REAL PPV kit (Durviz, Valencia, Spain) containing universal (5B) and strain typing (4DG5 and AL) PPV MAbs (1). PPV also was identified by immunocapture-reverse transcription-polymerase chain reaction (IC-RT-PCR) amplification and subsequent sequencing of the 220-bp 3′ noncoding region (2) (>99% sequence homology to PPV) and by IC-RT-PCR amplification of a 243-bp product in the coat protein (CP) gene (1). The virus was identified as PPV strain D based on serological typing with strainspecific MAbs and on PCR-restriction fragment length polymorphism of the CP IC-RT-PCR product with Rsa1 and Alu1 (1). This is the first report of PPV in North America. References: (1) T. Candresse et al. Phytopathology 88:198, 1998. (2) L. Levy and A. Hadidi. EPPO Bull. 24:595, 1994.


Viruses ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 246 ◽  
Author(s):  
Wycliff M. Kinoti ◽  
Narelle Nancarrow ◽  
Alison Dann ◽  
Brendan C. Rodoni ◽  
Fiona E. Constable

One hundred Prunus trees, including almond (P. dulcis), apricot (P. armeniaca), nectarine (P. persica var. nucipersica), peach (P. persica), plum (P. domestica), purple leaf plum (P. cerasifera) and sweet cherry (P. avium), were selected from growing regions Australia-wide and tested for the presence of 34 viruses and three viroids using species-specific reverse transcription-polymerase chain reaction (RT-PCR) or polymerase chain reaction (PCR) tests. In addition, the samples were tested using some virus family or genus-based RT-PCR tests. The following viruses were detected: Apple chlorotic leaf spot virus (ACLSV) (13/100), Apple mosaic virus (ApMV) (1/100), Cherry green ring mottle virus (CGRMV) (4/100), Cherry necrotic rusty mottle virus (CNRMV) (2/100), Cherry virus A (CVA) (14/100), Little cherry virus 2 (LChV2) (3/100), Plum bark necrosis stem pitting associated virus (PBNSPaV) (4/100), Prune dwarf virus (PDV) (3/100), Prunus necrotic ringspot virus (PNRSV) (52/100), Hop stunt viroid (HSVd) (9/100) and Peach latent mosaic viroid (PLMVd) (6/100). The results showed that PNRSV is widespread in Prunus trees in Australia. Metagenomic high-throughput sequencing (HTS) and bioinformatics analysis were used to characterise the genomes of some viruses that were detected by RT-PCR tests and Apricot latent virus (ApLV), Apricot vein clearing associated virus (AVCaV), Asian Prunus Virus 2 (APV2) and Nectarine stem pitting-associated virus (NSPaV) were also detected. This is the first report of ApLV, APV2, CGRMV, CNRNV, LChV1, LChV2, NSPaV and PBNSPaV occurring in Australia. It is also the first report of ASGV infecting Prunus species in Australia, although it is known to infect other plant species including pome fruit and citrus.


Plant Disease ◽  
2020 ◽  
Vol 104 (11) ◽  
pp. 2786-2798 ◽  
Author(s):  
Huazhen Liu ◽  
Guoping Wang ◽  
Zuokun Yang ◽  
Yanxiang Wang ◽  
Zhe Zhang ◽  
...  

Pear chlorotic leaf spot (PCLS) is a recently emerged disease of commercially cultivated sandy pear (Pyrus pyrifolia) trees in central and southern China. By integrating high-throughput sequencing and conventional Sanger sequencing of reverse-transcription (RT)-PCR products, a novel emaravirus infecting pear trees was identified and molecularly characterized. The virus was provisionally named pear chlorotic leaf spot-associated virus (PCLSaV). PCLSaV shows the typical molecular features of members of the genus Emaravirus in the family Fimoviridae. It has a genome composed of at least five negative-sense RNA segments, with each containing a single open reading frame and two complementary 13-nucleotide stretches at the 5′ and 3′ termini. PCLSaV shows a close phylogenetic relationship with recognized emaraviruses but forms a separate clade. Moreover, double-membrane-bound bodies were observed in PCLSaV-infected tissues and in extracts of PCLSaV-infected leaves. For the first time, our study revealed the profile distribution of viral RNA reads from the RNA-seq libraries of three samples along the RNA1 to RNA5 of an emaravirus. Field surveys combined with specific RT-PCR assays revealed the presence of PCLSaV in almost all PCLS-diseased pear samples, strongly supporting the association of the virus with the PCLS disease. This study revealed the first emaravirus infecting pear trees and its association with a severe pear chlorotic leaf disease.


Plant Disease ◽  
1998 ◽  
Vol 82 (12) ◽  
pp. 1405-1405 ◽  
Author(s):  
J. Staniulis ◽  
J. Stankiene ◽  
K. Sasnauskas ◽  
A. Dargeviciute

Plum pox (sharka) disease caused by plum pox potyvirus (PPV) is considered the most important virus disease of stone fruit trees in Europe and the Mediterranean region. Nearly all those countries that produce stone fruits are affected (3). The causal virus of the disease is a European Plant Protection Organization A2 quarantine pathogen. Symptoms of leaf mottling, diffuse chlorotic spots, rings, and vein banding of varied intensity characteristic for plum pox virus infection were observed in the plum (Prunus domestica) orchard tree collection of the Lithuanian Institute of Horticulture in Babtai in 1996. Presence of this virus in the diseased trees was confirmed by double antibody sandwich-enzyme-linked immunosorbent assay (DAS-ELISA) with kits from BIOREBA (Reinach, Switzerland) and by polyclonal antibodies raised against a Moldavian isolate of PPV courtesy of T. D. Verderevskaya (Institute of Horticulture, Kishinev, Moldova). ELISAs with both sources of antiserum were positive for presence of PPV. Electron microscopy revealed the presence of potyvirus-like particles averaging 770 nm in extracts of mechanically inoculated plants of Chenopodium foetidum (chlorotic LL [local lesions]) and Pisum sativum cvs. Rainiai and Citron (mottling). For molecular diagnosis and characterization of this isolate, PPV-971, reverse transcription-polymerase chain reaction (RT-PCR) was employed. Total RNA from the leaves of infected pea was isolated as described (2). High molecular weight RNA selectively precipitated with 2 M lithium chloride was used for RT-PCR amplification of the coat protein encoding sequence by use of specific primers complementary to 5′ and 3′ parts of PPV coat protein L1 (GenBank accession no. X81081). Amino acid sequence comparison with GenBank data indicated 98.2% similarity with coat protein of PPV potyvirus isolated by E. Mais et al. (accession no. X81083) and 97.3% with PPV strain Rankovic (1).The specific DNA fragment, corresponding to predicted coat protein sequence size, was cloned into Escherichia coli pUC57 for DNA sequencing. Expression of the cloned sequence in bacteria and yeast expression systems is under investigation. The presence of PPV in plum trees in the 9-year-old collection at Babtai was confirmed by DAS-ELISA in 1997 and again in 1998. PPV was then detected in 20% of symptomatic trees of three cultivars. The Lithuanian PPV isolate reacted positively with “universal” Mab.5b and with a Mab (Mab.4DG5) specific for PPV-D. No reaction was observed with Mabs specific for PPV-M (Mab.AL), PPV-C (Mab.AC and Mab.TUV), and PPV-El Amar (Mab.EA24). PPV-971 seems to be a typical member of the less aggressive Dideron strain cluster of PPV (D. Boscia, personal communication). This is the first report of PPV in Lithuania and confirms the necessity for continuing the precautionary measures established in this country for indexing of nursery plum trees used for graft propagation. References: (1) S. Lain et al. Virus Res. 13:157, 1989. (2) J. Logemann et al. Anal. Biochem. 163:16, 1987. (3) M. Nemeth. OEPP/EPPO Bull. 24:525, 1994.


Plant Disease ◽  
2021 ◽  
Author(s):  
Fang Ren ◽  
Zunping Zhang ◽  
Xudong Fan ◽  
Guojun Hu ◽  
Yafeng Dong

Grapevine Kizil Sapak virus (GKSV) is a novel member of the family Betaflexiviridae classified into the proposed genus Fivivirus within the subfamily Trivirinae. It was first discovered in USA from a grapevine originating from Turkmenistan (Al Rwahnih et al. 2019) and later in France from a grapevine accession from Iran (Marais et al. 2020). In October 2019, an asymptomatic grapevine cv. ‘Crimson Seedless’ (native to USA) was collected from Xinjiang province in China and analyzed by high-throughput sequencing (HTS). Ribosome-depleted RNA preparations were used for library synthesis followed by HTS on an Illumina HiSeq X-ten platform. A total of 29,141,024 cleaned reads were obtained, and 7,878 contigs were generated using CLC Genomics Workbench 9.5 (QIAGEN). One long contig (7,328 bp) showed 88.2% nucleotide (nt) identity with the sequence of GKSV-127 (MN172165) via Blastx, with an average coverage of 284-X. Bioinformatic analysis of the remaining contigs showed the presence of Grapevine leafroll-associated virus 4, Grapevine rupestris vein feathering virus, Grapevine fabavirus, grapevine yellow speckle viroid-1 (GYSVd-1), GYSVd-2 and Hop stunt viroid in the sample. The presence of GKSV was checked by RT-PCR using the primer GKSV-F/R (Al Rwahnih et al. 2019); the 1,240 bp PCR product was cloned using a pTOPO-T vector (Aidlab, China) and sequenced. In pairwise comparison, the obtained nt sequences shared 92.6 to 95.2% identity to the corresponding HTS sequence, confirming the presence of GKSV in the sample. The complete GKSV genome sequence was obtained as two pieces of overlapping DNA sequence using primers GKSV-20A/20B (5’-TAGTCTGGATTTCCCTACCT/5’-CTCCCTAAACTGATTTGATG) and GKSV-25A/25B (5’-GCCACTGGTGAATGAAAAGA/5’-CTAAATGAATGGGCAGGTAT) designed based on the HTS-generated sequence. The 5’ and 3’ termini were determined by rapid amplification of cDNA ends using SMARTer RACE 5’/3’ Kit (Takara, Dalian, China). The complete genome of GKSV isolate CS (MW582898) comprised 7,604 nt (without the polyA tail) and shared 77.8 to 89.2% identities with the other nine reported GKSV isolates, among which it shared the highest nt identity (89.2%) with GKSV-127. In phylogenetic analysis based on complete or nearly complete genome sequences of representative members of Betaflexiviridae, GKSV-CS clustered with the nine known GKSV isolates, forming a subclade with GKSV-127 (Supplementary Fig. 1). To determine the incidence and distribution of GKSV in China, 476 grapevine samples of 75 cultivars were collected from 20 provinces and tested by RT-PCR using primers GKSV-F/R (Al Rwahnih et al. 2019) and Vini-F1/R1 (Marais et al. 2020). The results showed that 0.42% (2 of 476) of the samples tested positive with both primers, including samples GKSV-CS and a ‘Black Monukka’ grape (native to India) also sampled from Xinjiang. Both PCR products of ‘Black Monukka’ were cloned and sequenced (MZ311588 to MZ311602) and they showed 85.1 to 88.9% nt identities to the GKSV-CS sequence. This is the first report of GKSV infecting grapevine in China. Although the pathogenicity of GKSV is yet to be determined, it has been found in several countries such as USA (Al Rwahnih et al. 2019), France (Marais et al. 2020) and China (this study). Both positive samples in this study were collected from Nanjiang region in Xinjiang province, indicating the sporadic occurrence of GKSV in this area.


Plant Disease ◽  
2005 ◽  
Vol 89 (7) ◽  
pp. 776-776 ◽  
Author(s):  
M. Mnari Hattab ◽  
J. Kummert ◽  
S. Roussel ◽  
K. Ezzaier ◽  
A. Zouba ◽  
...  

Viruses, distributed worldwide on cucurbits, cause severe damage to crops. Virus surveys in 2003 and 2004 were made in all the major cucurbit-growing areas in Tunisia. Large populations of aphids (Aphis gossypii Glover) and severe yellowing symptoms of older leaves of cucurbits were observed in outdoor and under plastic-tunnel cultivation, suggesting the presence of Cucurbit aphid-borne yellows virus (CABYV, genus Polerovirus, family Luteoviridae). Leaf samples collected from symptomatic and asymptomatic plants of melon (Cucumis melo L.), cucumber (C. sativus L.), squash (Cucurbita pepo L.), watermelon (Citrullus lanatus L.), and ware cucurbit (Ecballium elaterium L. T. Richard) were screened for the presence of CABYV using enzyme-linked immunosorbent assay (ELISA) and reverse transcription-polymerase chain reaction (RT-PCR). Reference isolate, CABYV-N (GenBank Accession No. X76931) was provided by H. Lecoq (INRA-Monfavet Cedex, France). Sample extracts from fresh leaf tissues were tested using ELISA with an antiserum prepared against this isolate. In addition, total RNA was extracted from fresh leaf tissues according to the technique of Celix et al. (2) using the Titan RT-PCR kit from Roche Diagnostics (Penzberg, Germany). Forward primer (5′-GAGGCGAAGGCGAAGAAATC-3′) and reverse primer (5′-TCTGGACCTGGCACTTGATG-3′) were designed with the available sequence of the reference isolate. ELISA tests demonstrated that 91 plants were positive among 160 plants tested with severe yellowing symptoms. All asymptomatic plants were negative. RT-PCR results yielded an expected 550-bp product that was amplified from the reference isolate. Of the 160 plants tested using ELISA, 106 plants were screened with RT-PCR including the 91 plants that were positive in ELISA. These 91 plants also were positive after RT-PCR amplification as were 12 more plants. This demonstrated that the RT-PCR test is more sensitive. No amplicons were produced from extracts of asymptomatic plants, RNA preparations of Cucurbit yellow stunting disorder virus (CYSDV), or Beet pseudo yellows virus (BPYV) positive controls provided by B. Falk (University of California, Davis). CYSDV and BPYV can induce similar yellowing symptoms in cucurbits. The results of the ELISA and RT-PCR tests showed that CABYV is widely distributed on five cucurbit species in the major growing areas of Tunisia including the northern, Sahel, central, and southern regions where it was detected, respectively, in 10 of 25, 11 of 21, 24 of 37, and 58 of 77 samples tested. CABYV was detected at the rates of 63 of 72 on melon, 10 of 21 on cucumber, 17 of 24 on squash, 10 of 25 on watermelon, and 3 of 18 on ware cucurbit. CABYV also seems to be widespread throughout the Mediterranean Basin (1,3,4), but to our knowledge, this is the first report of the occurrence of CABYV in Tunisia on different species of cucurbit and ware cucurbit. References: (1) Y. Abou-Jawdah et al. Crop Prot. 19:217, 2000. (2) A. Celix et al. Phytopathology 86:1370, 1996. (3) M. Juarez et al. Plant Dis. 88:907, 2004. (4) H. Lecoq et al. Plant Pathol. 41:749, 1992.


2021 ◽  
Vol 166 (3) ◽  
pp. 987-990
Author(s):  
Marius Rehanek ◽  
Susanne von Bargen ◽  
Martina Bandte ◽  
David G. Karlin ◽  
Carmen Büttner

AbstractWe report the complete nucleotide sequence of the genome of a novel virus in ringspot-diseased common oak (Quercus robur L.). The newly identified pathogen is associated with leaf symptoms such as mottle, chlorotic spots and ringspots on diseased trees. High-throughput sequencing (HTS, Illumina RNASeq) was used to explore the virome of a ringspot-diseased oak that had chlorotic ringspots of suspected viral origin on leaves for several years. Bioinformatic analysis of the HTS dataset followed by RT-PCR enabled us to determine complete sequences of four RNA genome segments of a novel virus. These sequences showed high similarity to members of the genus Emaravirus, which includes segmented negative-stranded RNA viruses of economic importance. To verify the ends of each RNA, we conducted rapid amplification of cDNA ends (RACE). We identified an additional genome segment (RNA 5) by RT-PCR using a genus-specific primer (PDAP213) to the conserved 3´ and 5´termini in order to amplify full-length genome segments. RNA 5 encodes a 21-kDa protein that is homologous to the silencing suppressor P8 of High Plains wheat mosaic virus. The five viral RNAs were consistently detected by RT-PCR in ringspot-diseased oaks in Germany, Sweden, and Norway. We conclude that the virus represents a new member of the genus Emaravirus affecting oaks in Germany and in Scandinavia, and we propose the name “common oak ringspot-associated emaravirus” (CORaV).


Plant Disease ◽  
2021 ◽  
Author(s):  
Kayleigh Bougard ◽  
Hans Jacob Maree ◽  
Gerhard Pietersen ◽  
Julia Christine Meitz-Hopkins ◽  
Rachelle Bester

Coguvirus eburi is a member of the genus Coguvirus in the family Phenuviridae (Khun et al., 2020). The species Coguvirus eburi was established to include citrus virus A (CiVA), which is a negative-sense, single-stranded RNA virus that was first found infecting sweet orange in southern Italy via high-throughput sequencing (HTS) (Navarro et al., 2018). This virus was also found to infect pome fruits in France, such as pear (Svanella-Dumas et al., 2019). More recently CiVA infections have been associated with impietratura disease in citrus (Beris et al. 2021). In the summer of 2021, leaf samples were collected from a pear tree (Pyrus communis cv. Bosc, B175) in the Koue Bokkeveld, South Africa as part of a virus survey. Sample B175 displayed no visual disease symptoms. One gram of leaf petioles was used for total RNA extraction, using a modified CTAB extraction protocol (Ruiz-García et al. 2019). Ribo-depleted RNA was prepared (Ribo-Zero Plant kit) and a sequencing library constructed (Illumina TruSeq Stranded Total RNA). The RNA library was paired-end (2 × 100 bp) sequenced on an Illumina HiSeqX instrument (Macrogen, South Korea). A total of 47,750,152 reads were obtained. Raw data was trimmed for quality with Trimmomatic (SLIDINGWINDOW:3:20, MINLEN:20) (Bolger et al. 2014). De novo assembly performed with CLC Genomics Workbench 11.0.1 (Qiagen) (Default parameters) using high quality reads yielded 75250 contigs. BLASTn analysis identified two viral contigs with high nucleotide (nt) identity to apple stem pitting virus (ASPV) and CiVA. The CiVA contig was 9400 nts and on closer examination, a concatemer of CiVA RNA1 and RNA2. The concatenation occurred due to the characteristic near-identical nucleotides shared at the 5’ and 3’ ends of RNA1 and RNA2 of these negative-stranded RNA viruses (Navarro et al., 2018). After splitting and curation, the RNA1 contig was 6664 nts and the RNA2 contig 2686 nts. A total of 51397 and 34820 reads were used to construct these contigs resulting in an average depth of coverage of 761 and 1281 for RNA1 and RNA2, respectively. The contigs had the highest nt identity to the complete CiVA GenBank accessions MT720885.1 (95.53%) and MW148460.1 (96.03%), spanning 99.6% and 98.1 % of the genomes of RNA1 and RNA2, respectively. These contigs were submitted as partial genomes to GenBank as accessions MZ463039 and MZ463040. Reverse transcription polymerase chain reaction (RT-PCR) was used to validate the presence of CiVA in sample B175. Two RT-PCR assays, directed at RNA1 and RNA2 respectively (Bester et al. (2021)) were used to generate amplicons. Amplicon sequences were confirmed with bi-directional Sanger sequencing. Twenty-one additional samples from the same orchard as B175 as well as other samples from the Koue Bokkeveld and Elgin areas, including cultivars Abate (10 samples), Forelle (10 samples), Early Bon Chretien (3 samples), Packham’s Triumph (12 samples) and Rosemarie (3 samples), were all surveyed for CiVA using the same RT-PCR assays as mentioned above. Thirty-six of the 59 samples tested were positive for CiVA, which further confirms the presence and wide-spread distribution of this virus in the limited survey conducted in pears in South Africa. However, no association with any disease symptoms or specific cultivar were identified. This is the first report of CiVA infecting pear in South Africa. This study therefore contributed to investigating the distribution of this virus and will assist the South African plant material certification scheme to assess the incidence of CiVA in South Africa.


Plant Disease ◽  
2021 ◽  
Author(s):  
Despoina Beris ◽  
Ioanna Malandraki ◽  
Oxana Kektsidou ◽  
Christina Varveri

During winter 2020-2021, a severe virus-like disease outbreak was observed in eggplant (Solanum melongena L.) hybrids ‘Monarca’ (F1) and ‘Angela’ (F1) growing under protected conditions in Heraklion, Crete, Greece. In three greenhouses, the percentage of infected plants reached 100% leading to crop abandonment. Symptoms included leaf mottling and yellowing accompanied with plant stunting and apical necrosis. Extensive fruit damage was due to severe malformation and necrotic lesions on the calyx, peduncle and the endocarp (Sup. Fig. 1). To identify the causal agent, total RNA was extracted from a symptomatic eggplant fruit with PureLink™ RNA Mini Kit (ThermoFisher Scientific, USA), which was subjected to high throughput sequencing (HTS) analysis (Illumina Inc., USA). The de novo assembly of the obtained 25 million, 75 bp, single-end reads with Geneious Prime (Biomatters, New Zealand) and the annotation of the resulting contigs with BLASTn revealed the presence of only eggplant mottled crinkle virus (EMCV, genus Tombusvirus) in the sample. The assembled sequence of EMCV isolate from Greece (EMCV-Gr, GenBank Acc. No. MW716271) was 4764 bp in length, covering the full genome of the virus and showing 96.3 % nucleotide (nt) identity with an isolate identified from calla lilies (Zantedeschia sp.) in Taiwan (AM711119). Five symptomatic and seven asymptomatic ‘Monarca’ (F1) eggplants, as well as two symptomatic ‘Angela’ (F1) eggplants were tested by RT-PCR that targeted the capsid protein gene of the virus (Dombrovsky et al., 2009). PCR products of 1184 bp were obtained from the seven symptomatic samples and their Sanger sequencing revealed 100 % nt identity with the respective HTS-derived EMCV sequence. No product was obtained from the analysis of the asymptomatic samples. Mechanical sap transmission of the HTS analysed eggplant sample resulted in necrotic local lesions on Nicotiana rustica and Chenopodium quinoa, necrotic local lesions plus systemic necrosis on N. tabacum cv. Xanthi-nc, cv. Samsun and N. glutinosa, systemic collapse of N. benthamiana, and leaf mottling plus stunting of pepper cv. Yolo Wonder plants (Sup. Fig. 1I). Although no symptoms were observed on tomato plants cv. Ace 55, systemic EMCV infection was detected by RT-PCR. To establish the relationship between the disease and EMCV, infected tissue from N. benthamiana plants was used for the mechanical inoculation of virus-tested negative eggplant seedlings cv. Black beauty. Necrotic spots, shoot necrosis, leaf mottling and mosaic, symptoms were observed (Sup. Fig. J) on the test plants ten days post inoculation and the presence of the virus was confirmed by RT-PCR as described. To the best of our knowledge this is the first report of EMCV infecting eggplant in Greece. The virus was originally described in eggplant in Lebanon (Makkouk et al., 1981) and it is mainly present outside the European Union (EU) territory, including India, Japan, Taiwan, Iran and Israel (Dombrovsky et al., 2009 and references therein). A latent EMCV infection was detected in pear in Italy (Russo et al., 2002) and the virus is considered by the European Food Safety Authority as an exotic virus of the genera Cydonia, Malus, and Pyrus that meets all the criteria to qualify as an EU quarantine pest (Bragard et al., 2019). Τhe severity of the disease observed in Crete leading to the destruction of eggplant greenhouse cultivations, constitutes EMCV as an emerging threat to eggplant and other solanaceous crops for Greece and Europe.


Sign in / Sign up

Export Citation Format

Share Document