scholarly journals Identification and Characterization of Diaporthe ambigua, D. australafricana, D. novem, and D. rudis Causing a Postharvest Fruit Rot in Kiwifruit

Plant Disease ◽  
2017 ◽  
Vol 101 (8) ◽  
pp. 1402-1410 ◽  
Author(s):  
Gonzalo A. Díaz ◽  
Bernardo A. Latorre ◽  
Mauricio Lolas ◽  
Enrique Ferrada ◽  
Paulina Naranjo ◽  
...  

Diaporthe spp. are important plant pathogens causing wood cankers, blight, dieback, and fruit rot in a wide range of hosts. During surveys conducted during the 2013 and 2014 seasons, a postharvest rot in Hayward kiwifruit (Actinidia deliciosa) was observed in Chile. In order to identify the species of Diaporthe associated with this fruit rot, symptomatic fruit were collected from seven kiwifruit packinghouses located between San Francisco de Mostazal and Curicó (central Chile). Twenty-four isolates of Diaporthe spp. were identified from infected fruit based on morphological and cultural characters and analyses of nucleotides sequences of three loci, including the internal transcribed spacer (ITS) region (ITS1-5.8S-ITS2), a partial sequences of the β-tubulin, and translation elongation factor 1-α genes. The Diaporthe spp. identified were Diaporthe ambigua, D. australafricana, D. novem, and D. rudis. Multilocus phylogenetic analysis revealed that Chilean isolates were grouped in separate clades with their correspondent ex-types species. All species of Diaporthe were pathogenic on wounded kiwifruit after 30 days at 0°C under normal and controlled-atmosphere (2% O2 and 5% CO2) storage and they were sensitive to benomyl, pyraclostrobin, and tebuconazole fungicides. D. ambigua isolates were the most virulent based on the lesion length measured in inoculated Hayward and Jintao kiwifruit. These findings confirm D. ambigua, D. australafricana, D. novem, and D. rudis as the causal agents of kiwifruit rot during cold storage in Chile. The specie D. actinidiae, a common of Diaporthe sp. found associated with kiwifruit rot, was not identified in the present study.

IMA Fungus ◽  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sun Lul Kwon ◽  
Myung Soo Park ◽  
Seokyoon Jang ◽  
Young Min Lee ◽  
Young Mok Heo ◽  
...  

AbstractSpecies of Arthrinium are well-known plant pathogens, endophytes, or saprobes found in various terrestrial habitats. Although several species have been isolated from marine environments and their remarkable biological activities have been reported, marine Arthrinium species remain poorly understood. In this study, the diversity of this group was evaluated based on material from Korea, using morphological characterization and molecular analyses with the internal transcribed spacer (ITS) region, β-tubulin (TUB), and translation elongation factor 1-alpha (TEF). A total of 41 Arthrinium strains were isolated from eight coastal sites which represented 14 species. Eight of these are described as new to science with detailed descriptions.


Plant Disease ◽  
2015 ◽  
Vol 99 (5) ◽  
pp. 699-708 ◽  
Author(s):  
You Zhou ◽  
Guoshu Gong ◽  
Yongliang Cui ◽  
Daixi Zhang ◽  
Xiaoli Chang ◽  
...  

Species of Botryosphaeriaceae fungi are important plant pathogens causing cankers, blight, and fruit rot in an extremely wide range of host. In recent years, kiwifruit rot has been a serious problem in Sichuan Province, one of the important kiwifruit production areas of China. Botryosphaeria dothidea has previously been associated with kiwifruit rot but little is known regarding whether other Botryosphaeriaceae genera also constitute kiwifruit rot pathogens in China. Accordingly, diseased fruit were collected from six different areas of Sichuan Province. Based on morphological characteristics, pathogenicity testing, and comparisons of DNA sequences of the internal transcribed spacer, transcription elongation factor 1-α, and β-tubulin genes, 135 isolates of Botryosphaeriaceae were identified as B. dothidea, Lasiodiplodia theobromae, and Neofusicoccum parvum. All of these species were found to cause kiwifruit rot. To understand the infection cycle of kiwifruit rot pathogens, these three species were used to inoculate leaves and shoots of kiwifruit. The results showed that these species could cause spots on leaves and lesions on shoots, producing abundant pycnidia on leaves and shoots surfaces. Moreover, B. dothidea conidia and ascospores from overwintered pycnidia and pseudothecia in kiwifruit orchards in April and August could cause fruit rot and spots on leaves of kiwifruit. Therefore, we concluded that overwintered pycnidia and pseudothecia of B. dothidea in kiwifruit orchards are the primary inoculum for kiwifruit rot, with new pycnidia that develop during the growing season serving as a secondary inoculum. This is the first report of N. parvum and L. theobromae causing kiwifruit rot in China and is also the first report that B. dothidea is able to overwinter as pycnidia and pseudothecia in kiwifruit orchards and serve as the primary inoculum for kiwifruit rot.


MycoKeys ◽  
2021 ◽  
Vol 77 ◽  
pp. 41-64
Author(s):  
Qin Yang ◽  
Ning Jiang ◽  
Cheng-Ming Tian

Diaporthe species have often been reported as important plant pathogens, saprobes and endophytes on a wide range of plant hosts. Although several Diaporthe species have been recorded, little is known about species able to infect forest trees in Jiangxi Province. Hence, extensive surveys were recently conducted in Jiangxi Province, China. A total of 24 isolates were identified and analysed using comparisons of DNA sequence data for the nuclear ribosomal internal transcribed spacer (ITS), calmodulin (cal), histone H3 (his3), partial translation elongation factor-1α (tef1) and β-tubulin (tub2) gene regions, as well as their morphological features. Results revealed five novel taxa, D. bauhiniae, D. ganzhouensis, D. schimae, D. verniciicola, D. xunwuensis spp. nov. and three known species, D. apiculatum, D. citri and D. multigutullata.


MycoKeys ◽  
2020 ◽  
Vol 67 ◽  
pp. 1-18 ◽  
Author(s):  
Qin Yang ◽  
Ning Jiang ◽  
Cheng-Ming Tian

Diaporthe species (Sordariomycetes, Diaporthales) are often reported as important plant pathogens, saprobes and endophytes on a wide range of plant hosts. In this study, Diaporthe specimens were collected from symptomatic twigs and branches at the Huoditang Forest Farm in Shaanxi Province, China. Identification was done using a combination of morphology and comparison of DNA sequence data of the nuclear ribosomal internal transcribed spacer (ITS), calmodulin (cal), histone H3 (his3), partial translation elongation factor-1α (tef1) and β-tubulin (tub2) gene regions. Three new Diaporthe species are proposed: D. albosinensis, D. coryli and D. shaanxiensis. All species are illustrated and their morphology and phylogenetic relationships with other Diaporthe species are discussed.


MycoKeys ◽  
2018 ◽  
Vol 39 ◽  
pp. 97-149 ◽  
Author(s):  
Qin Yang ◽  
Xin-Lei Fan ◽  
Vladimiro Guarnaccia ◽  
Cheng-Ming Tian

Diaporthespecies have often been reported as important plant pathogens, saprobes and endophytes on a wide range of plant hosts. Although severalDiaporthespecies have been recorded in China, little is known about species able to infect forest trees. Therefore, extensive surveys were recently conducted in Beijing, Heilongjiang, Jiangsu, Jiangxi, Shaanxi and Zhejiang Provinces. The current results emphasised on 15 species from 42 representative isolates involving 16 host genera using comparisons of DNA sequence data for the nuclear ribosomal internal transcribed spacer (ITS),calmodulin(cal), histone H3 (his3), partial translation elongation factor-1α (tef1) and β-tubulin (tub2) gene regions, as well as their morphological features. Three known species,D.biguttulata,D.eresandD.unshiuensis, were identified. In addition, twelve novel taxa were collected and are described asD.acerigena,D.alangii,D.betulina,D.caryae,D.cercidis,D.chensiensis,D.cinnamomi,D.conica,D.fraxinicola,D.kadsurae,D.padinaandD.ukurunduensis. The current study improves the understanding of species causing diebacks on ecological and economic forest trees and provides useful information for the effective disease management of these hosts in China.


Plant Disease ◽  
2018 ◽  
Vol 102 (11) ◽  
pp. 2083-2100 ◽  
Author(s):  
Beatriz Mora-Sala ◽  
Ana Cabral ◽  
Maela León ◽  
Carlos Agustí-Brisach ◽  
Josep Armengol ◽  
...  

Cylindrocarpon-like asexual morphs infect herbaceous and woody plants, mainly in agricultural scenarios, but also in forestry systems. The aim of the present study was to characterize a collection of Cylindrocarpon-like isolates recovered from the roots of a broad range of forest hosts from nurseries showing decline by morphological and molecular studies. Between 2009 and 2012, 17 forest nurseries in Spain were surveyed and a total of 103 Cylindrocarpon-like isolates were obtained. Isolates were identified based on DNA sequences of the partial gene regions histone H3 (his3). For the new species, the internal transcribed spacer and intervening 5.8S nrRNA gene (ITS) region, β-tubulin (tub2), and translation elongation factor 1-α (tef1) were also used to determine their phylogenetic position. Twelve species belonging to the genera Cylindrodendrum, Dactylonectria, and Ilyonectria were identified from damaged roots of 15 different host genera. The species C. alicantinum, D. macrodidyma, D. novozelandica, D. pauciseptata, D. pinicola, D. torresensis, I. capensis, I. cyclaminicola, I. liriodendri, I. pseudodestructans, I. robusta, and I. rufa were identified. In addition, two Dactylonectria species (D. hispanica sp. nov. and D. valentina sp. nov.), one Ilyonectria species (I. ilicicola sp. nov.), and one Neonectria species (N. quercicola sp. nov.) are newly described. The present study demonstrates the prevalence of this fungal group associated with seedlings of diverse hosts showing decline symptoms in forest nurseries in Spain.


Plant Disease ◽  
2022 ◽  
Author(s):  
Liu Yang ◽  
Tian Yuan ◽  
Xia Zhao ◽  
Yue Liang ◽  
UWAREMWE CONSTANTINE ◽  
...  

Root rot is a serious disease in plantations of A. sinensis, severely affecting yield and quality and threatening sustainable production. Fusarium isolates (n=32) were obtained from field samples of root rot tissue, leaves and infected soil. Isolates were identified by comparing the sequences of their internal transcribed spacer (ITS) region and translation elongation factor 1-ɑ (TEF-1ɑ) to sequences of known species in the NCBI-database. These Fusarium isolates include F. tricinctum (43.75%), F. equiseti (31.25%), F. solani (9.37%), F. oxysporum (6.25%), F. acuminatum (6.25%), and F. incarnatum (3.12%). For pathogenicity testing under greenhouse conditions, seven isolates were selected based on a phylogenetic analysis, including four strains of F. tricinctum and one strain each of F. solani, F. oxysporum, and F. acuminatum. The seven isolates were all pathogenic but differed in their ability to infect: the four F. tricinctum strains were capable pathogens causing root rot in A. sinensis at 100% incidence and the highly aggressive. Furthermore, the symptoms of root rot induced by those seven isolates were consistent with typical root rot cases in the field, but their disease severity varied. Observed histopathological preparations of F. tricinctum-infected seedlings and tissue-slides results showed this fungal species can penetrate epidermal cells and colonize the cortical cells where it induces necrosis and severe plasmolysis. Plate confrontation experiments showed that isolated rhizosphere bacteria inhibited the Fusarium pathogens that cause root rot in A. sinensis. Our results provide timely information for informing the use of biocontrol agents for suppression of root rot disease.


Phytotaxa ◽  
2021 ◽  
Vol 508 (1) ◽  
Author(s):  
XU ZHANG ◽  
ZHI-QUN LIANG ◽  
SHUAI JIANG ◽  
CHANG XU ◽  
XIN-HUA FU ◽  
...  

Baorangia duplicatopora is described as a new species from Hainan Province, a tropical region of China. It is morphologically characterized by large to very large basidiomata with a dull rose red, rose pink to purplish red pileus, compound pores, pileus context near hymenophore and stipe context staining blue when injured, a red stipe, and cheilocystidia wider than those of other Baorangia species. Phylogenetic analyses of DNA sequences from part of the 28S gene, the nuc rDNA internal transcribed spacer (ITS) region, and part of the translation elongation factor 1-α gene (TEF1) also confirmed that B. duplicatopora forms an independent lineage within Baorangia. Detailed descriptions, color photographs of fresh basidiomata, and line drawings of microscopic features of the new species are presented. A key to species of Baorangia in the world is also provided.


Plant Disease ◽  
2021 ◽  
Author(s):  
Gonzalo A. Díaz ◽  
Adrián Vinicio Valdez ◽  
Francois Halleen ◽  
Enrique Ferrada ◽  
Mauricio A. Lolas ◽  
...  

In recent years, the number of apple trees affected by Botryosphaeria cankers and dieback has considerably increased in central Chile. This study aimed to identify the species of Botryosphaeriaceae associated with canker and dieback symptoms, estimate disease incidence and distributions, and study their pathogenicity and virulence on apple and other fruit crops. A field survey of 34 commercial orchards of apple (7-to 30-year-old) was conducted in 16 localities obtaining 270 symptomatic branches and trunks samples in 2017 and 2018 growing seasons. The incidence of Botryosphaeria canker and dieback ranged between 5 and 40%, and a total of 255 isolates of Botryosphaeriaceae spp. were obtained from 238 cankers. Morphological identification along with phylogenetics studies of the internal transcribed spacer (ITS) region (ITS1-5.8S-ITS2) of the rDNA, part of the translation elongation factor 1-α (tef1-α), and part of the beta tubulin (tub2) genes allowed to identify Diplodia mutila (n = 49 isolates), D. seriata (n = 136 isolates), Lasiodiplodia theobromae (n = 16 isolates) and Neofusicoccum arbuti (n= 54 isolates). L. theobromae was isolated mainly of apple dieback from northern localities. All pathogens tested were pathogenic, causing canker and dieback symptoms on lignified twigs of apple, pear, walnut, and green grapevine shoots in the field. Isolates of N. arbuti were the most virulent by reproducing more severe cankers on lignified tissues inoculated. This study reports D. mutila and L. theobromae for the first time associated with Botryosphaeria canker and dieback in Chile, and it is the first description of N. arbuti causing apple dieback worldwide.


2019 ◽  
Vol 43 (1) ◽  
pp. 70-89 ◽  
Author(s):  
M.M. Wang ◽  
Q. Chen ◽  
Y.Z. Diao ◽  
W.J. Duan ◽  
L. Cai

The Fusarium incarnatum-equiseti species complex (FIESC) is shown to encompass 33 phylogenetic species, across a wide range of habitats/hosts around the world. Here, 77 pathogenic and endophytic FIESC strains collected from China were studied to investigate the phylogenetic relationships within FIESC, based on a polyphasic approach combining morphological characters, multi-locus phylogeny and distribution patterns. The importance of standardised cultural methods to the identification and classification of taxa in the FIESC is highlighted. Morphological features of macroconidia, including the shape, size and septum number, were considered as diagnostic characters within the FIESC. A multi-locus dataset encompassing the 5.8S nuclear ribosomal gene with the two flanking internal transcribed spacers (ITS), translation elongation factor (EF-1α), calmodulin (CAM), partial RNA polymerase largest subunit (RPB1) and partial RNA polymerase second largest subunit (RPB2), was generated to distinguish species within the FIESC. Nine novel species were identified and described. The RPB2 locus is demonstrated to be a primary barcode with high success rate in amplification, and to have the best species delimitation compared to the other four tested loci.


Sign in / Sign up

Export Citation Format

Share Document