scholarly journals First Report of Leaf Spot Caused by Colletotrichum fructicola on Myrica rubra in China

Plant Disease ◽  
2021 ◽  
Author(s):  
Shucheng Li ◽  
Liuhua Xiao ◽  
Fan Wu ◽  
Yinbao Wang ◽  
Mingshu Jia ◽  
...  

Myrica rubra is an important fruit tree with high nutritional and economic value, which is widely cultivated in multiple regions of China. In January 2021, an unknown disease which caused leaf spot with approximately 20% (n=100 investigated plants) of incidence was discovered on the leaves of M.rubra in Jiujiang City of Jiangxi Province (29.71° N, 115.97° E). The initial symptoms were small pale brown spots (1 to 2 mm diameter) on the leaves, which gradually expanded into round or irregular dark brown spots with the occurrence of the disease, and the lesion developed necrotic tissues in the center at later stages, eventually leading the leaves to chlorotic and wilted. Ten diseased leaves with typical symptoms were collected and the leaf tissue (5 × 5 mm) at junction of diseased and healthy portion were cut. The surfaces were disinfected with 75% ethanol for 45 s, 1% sodium hypochlorite for 1 min, and rinsed in sterile water for 3 times then transferred to potato dextrose agar (PDA) at 28 ± 1 ℃ for 3 days. Five fungal single isolates with similar morphology were purified from single spores. On PDA medium, the colonies initially appeared white with numerous aerial hyphae, and the center of the colony turned gray at later stages, less sporulation. While on modified czapek-dox medium (Peptone 3g, K2HPO4 1g, MgSO4·7H2O 0.5g, KCl 0.5g, FeSO4 0.01g, Maltose 30g, Agar 15g, Distilled water 1000 mL, pH=7.0), the mycelia of the colony were sparse and produced a large number of small bright orange particles (conidial masses). Conidia were single-celled, transparent, smooth-walled, 1-2 oil globule, cylindrical with slightly blunt rounded ends, 14.45-18.44 × 5.54-6.98 μm (av=16.27 μm × 6.19 μm, n=50) in size. These morphological characteristics of the pathogen were similar to the descriptions of Colletotrichum fructicola (Ruan et al, 2017; Yang et al, 2021). To further confirm the identity of the pathogen, genomic DNA from a representative isolate was extracted with DNA Extraction Kit (Yeasen, Shanghai, China), and the internal transcribed spacer (ITS), glyceraldehyde-3-phosphatedehydrogenase (GAPDH), calmodulin gene (CAL), actin (ACT) and chitin synthase 1 (CHS 1) were amplified by using the primers ITS1/ITS4 (Gardes et al, 1993), GDF/GDR (Templeton et al, 1992), CL1C/CL2C (Weir et al, 2012), ACT-512F/ACT-783R and CHS-79F/CHS-345R (Carbone et al, 1999), respectively. The PCR amplified sequences were submitted to GenBank (GenBank Accession No. ITS, MW740334; GAPDH, MW759805; CAL, MW759804; ACT, MW812384; CHS-1, MW759803) and aligned with GenBank showed 100% identity with C. fructicola (GenBank Accession No. ITS, MT355821.1 (546/546 bp); GAPDH, MT374664.1 (255/255 bp); CAL, MK681354.1 (741/741 bp); ACT, MT364655.1 (262/262 bp); CHS, MT374618.1 (271/271 bp)). Phylogenetic tree using the maximum likelihood methods with Kimura 2-parameter model and combined ITS-ACT-GAPDH-CHS-CAL concatenated sequences, bootstrap nodal support for 1000 replicates in MEGA7.0, revealed that the isolate was assigned to C. fructicola strain (ICMP 18581 and CBS 125397) (Yang et al. 2021) with 98% bootstrap support. Pathogenicities of were tested on fifteen healthy M. rubra plants (five for wounded inoculation, five for nonwounded inoculation, and five for controls) in the orchard. Twenty leaves were marked from each plant, and disinfected the surface with 75% ethanol. Ten μL spore suspension (1.0 × 106 conidia/ml) of each isolate from 7-day-old culture were inoculated on the surface of 20 needle-wounded and 20 nonwounded leaves, respectively. Healthy leaves were inoculated with sterile water as controls by the same method. All inoculated leaves were sprayed with sterile water and covered with plastic film to remained humidification. After 5 days, all the wounded leaves which were inoculated with C. fructicola showed similar symptoms to those observed on the original leaves. Symptoms of nonwounded leaves were milder than the wounded inoculated leaves, while control leaves remained healthy. Finally, the C. fructicola was re-isolated from the inoculated leaves. C. fructicola has been reported on Juglans regia, Peucedanum praeruptorum, Paris polyphylla var. Chinensis in China (Wang et al, 2017; Ma et al, 2020; Zhou et al, 2020). As far as we know, this is the first report of C. fructicola causing leaf spot on M.rubra in China. This result contributes to better understand the pathogens causing diseases of M.rubra in this region of China and develop effective control strategies.

Plant Disease ◽  
2021 ◽  
Author(s):  
Chunlin Yang ◽  
Feng Liu ◽  
Qian Zeng ◽  
Xiulan Xu ◽  
Yicong Lv ◽  
...  

“Chuanzao 2” is a walnut variety derived from the hybridization of Juglans regia L. and J. sigillata Dode distributed in southwest China, where it is an economically important tree species in rural regions (Xiao et al. 2012). In April 2020, the variety in a walnut garden showed symptoms of brown leaf spot in Beishan Town (107°21′43.93″E, 31°28′12.34″N), Dazhou City in Sichuan, China, with 5% to 10% of leaves per plant affected (5 plants). Symptomatic leaves showed brown to dark brown spots (2 to 5 mm) with a dark brown to black halo and grayish-tan center. The spots were subcircular to irregular in shape, and gradually expanded and formed necrotic spots. A single conidium isolation was performed (Senanayake et al. 2020) and transferred to Potato Dextrose Agar (PDA). Five isolates were obtained from five different infected leaves. Colonies of five isolates were subcircular, erose or dentate, flat or effuse, white initially, gradually becoming yellowish with white margins, developed and fluffy aerial mycelia, and conidiogenensis was produced underneath mycelia after 25-days-incubation. Conidiogenous cells were subcylindrical to cylindrical, or irregular in shape, and hyaline. Macroconidia were lunate, reniform, hyaline, basal cell bluntly rounded, apical cell with acute end, 1-septate, rarely aseptate, sometimes slightly constricted at septum, basal cell equal or larger than apical cell, and measured 16.5 to 30.5 × 5 to 8.5 μm (mean = 23.2 × 6.3 μm, n = 50). Microconidia were not observed. These morphological characteristics resembled those of Ophiognomonia leptostyla (Fr.) Sogonov (Walker et al. 2012a). For molecular identification, genomic DNA (isolates SICAUCC 21-0008 and SICAUCC 21-0010) was extracted, and the internal transcribed spacers (ITS) region, guanine nucleotide-binding protein subunit beta (MS204) gene, and translation elongation factor 1-alpha (tef1-α) were amplified and sequenced by using the primers ITS5/ITS4 (White et al. 1990), E1F1/E5R1a (Walker et al. 2012a), and EF1-728F/EF1-1567R (Walker et al. 2012b), respectively. Phylogenetic analyses (maximum likelihood) based on a combined dataset showed 100% bootstrap support values in a clade with O. leptostyla. The sequences of ITS, MS204, and tef1-α genes were deposited in GenBank with accession numbers MW493111/MZ026300, MW495270/MZ031975, and MW495271/MZ031974, respectively. To fulfill Koch’s postulates, five healthy hybrid plants (2 to 3 years old) with 5 to 8 leaves per plant were spray inoculated with conidium suspensions (104 conidia/mL; isolate SICAUCC 21-0008) prepared from 40-days-old cultures onto the wounded sites via pin-prick inoculation. Similarly, five noninoculated plants sprayed with sterile water served as controls. Plants were placed in a growth chamber at 25℃ on a 12-h fluorescent light/dark regime and daily sprayed with sterile distilled water. After two weeks, observed symptoms were similar to those from natural infections. No disease symptoms were found on control plants. The fungus O. leptostyla was reisolated from the diseased leaves and characterized morphologically. O. leptostyla is a global pathogen and has been reported to cause the leaf spot in many walnut trees, viz. J. ailantifolia, J. californica, J. cinerea, and J. major, etc. To our knowledge, this is the first report of O. leptostyla causing brown leaf spot on Juglans hybrid (J. regia × J. sigillata) in China. The increasing risk of this pathogen in the walnut-growing areas of Sichuan Province of China needs a further exploration and outreach effort to develop effective control measures. Chunlin Yang, Feng Liu, and Qian Zeng contributed equally to this paper.


Plant Disease ◽  
2021 ◽  
Author(s):  
Yang Zhou ◽  
Rou Ye ◽  
Qin Ying ◽  
Yang Zhang ◽  
Linping Zhang

Dalbergia hupeana is a kind of wood and medicinal tree widely distributed in southern China. Since 2019, a leaf spot disease was observed on the leaves of D. hupeana in Gangxia village, Luoting town in Jiangxi Province, China (28°52′53″N, 115°44′58″E). The disease incidence was estimated to be above 50%. The symptoms began as small spots that gradually expanded, developing a brown central and dark brown to black margin. The spots ranged from 4 to 6 mm in diameter. Leaf pieces (5 × 5 mm) from lesion margins were surface sterilized in 70% ethanol for 30 s followed by 2% NaOCl for 1 min and then rinsed three times with sterile water. Tissues were placed on potato dextrose agar (PDA) and incubated at 25°C. Pure cultures were obtained by monosporic isolation. Fifteen strains with similar morphological characterizations were isolated, and three representative isolates (JHT-1, JHT-2, and JHT-3) were chosen and used for further study. Colonies on PDA of three isolates were grayish-green with white edges and dark green on the reverse side. Conidia were transparent, cylindrical with rounded ends, and measured 3.6-5.3 µm × 9.5-15.2 µm (3.7 ± 0.2 × 13.6 ± 1.1 µm, n = 100). Appressoria were dark brown, globose or subcylindrical, and ranged from 6.2-9.2 µm× 5.1-6.8 µm (7.9 ± 0.4 × 5.9 ± 0.3 µm, n=100). The morphological characteristics of the three strains were consistent with the description of species in the Colletotrichum gloeosporioides complex (Weir et al. 2012). The internal transcribed spacer (ITS) regions, actin (ACT), calmodulin (CAL), chitin synthase (CHS-1) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and beta-tubulin 2 (TUB2) were amplified from genomic DNA for the three isolates using primers ITS1/ITS4, ACT-512F/ACT-783R, CL1/CL2, CHS-79F/CHS-345R, GDF/GDR and T1/Bt2b (Weir et al. 2012), respectively. The sequences were deposited in GenBank (Accession Nos. MZ482016 - MZ482018 for ITS; MZ463636 - MZ463638 for ACT; MZ463648- MZ463650 for CAL; MZ463639 - MZ463641 for CHS-1; MZ463642 - MZ463644 for GAPDH; MZ463645 - MZ463647 for TUB2). A neighbor-joining phylogenetic tree was constructed with MEGA 7.0 using the concatenation of multiple sequences (ITS, ACT, GAPDH, TUB2, CHS-1, CAL) (Kumar et al. 2016). According to the phylogenetic tree, three isolates fall within the Colletotrichum fructicola clade (boot support 99%). Based on morphological characteristics and phylogenetic analysis, three isolates were identified as C. fructicola. The pathogenicity of three isolates was conducted on two-yr-old seedlings (30 cm tall) of D. hupeana. Healthy leaves were wounded with a sterile needle and then inoculated with 10 μL spore suspension (106 conidia per mL). Controls were treated with sterile water. All plants were covered with transparent plastic bags and incubated in a greenhouse at 28°C with a 12 h photoperiod (relative humidity > 80%). Within five days, the inoculated leaves developed lesions similar to those observed in the field, whereas controls were asymptomatic. The experiments repeated three times showed similar results. The infection rate was 100%. C. fructicola was re-isolated from the lesions, whereas no fungus was isolated from control leaves. C. fructicola can cause leaf diseases in a variety of hosts, including Aesculus chinensis (Sun et al. 2020), Peucedanum praeruptorum (Ma et al. 2020), and Mandevilla × amabilis (Sun et al. 2020). C. brevisporum and C. gigasporum were also reported to infect Dalbergia odorifera (Chen et al. 2021; Wan et al. 2018). However, This is the first report of C. fructicola associated with leaf spot disease on D. hupeana in China. These results will help to develop effective strategies for appropriately managing this newly emerging disease.


Plant Disease ◽  
2021 ◽  
Author(s):  
Yang Zhang ◽  
Guangqiang Li ◽  
Dou Yang ◽  
Ruoling Zhang ◽  
Songze Wan

Mu oil tree (Vernicia montana) is an economically important woody oil plant, which is widely distributed in southern China. In mid-May 2020, a leaf spot disease was observed on the leaves of mu oil tree in Taihe County in Jiangxi Province, China (26°55′25.55″N, 114°49′5.85″E). The disease incidence was estimated to be above 40%. Initial symptoms were circular red-brown spots which were 1-2 mm in diameter, then enlarged with red-brown center. In later stages, the spots coalesced and formed large patches, and subsequently red-brown centers of lesions gradually dried and fell out, forming a “shot hole” appearance. To identify the pathogen, diseased leaves were collected from Taihe County. Leaf tissues (5 × 5 mm) were cut from the margins of typical symptomatic lesions, surface- sterilized in 75% ethanol for 30 seconds and 3% sodium hypochlorite for 60 seconds, then rinsed with sterile distilled water three times. Leaf pieces were placed on potato dextrose agar (PDA; 1.5%, Difco-BD Diagnostics) and incubated at 25 °C in the dark. Pure cultures were obtained from individual conidia by recovering single spores. On PDA, colonies were initially white and cottony. The mycelia then became pinkish to deep-pink with time at the center on the front side and pink on the reverse side. Colonies produced pale orange conidial masses after 9 days. Conidia were fusiform with acute ends, smooth-walled, hyaline, and measured 3.6–5.5 × 8.1–14.5 µm (4.5 ± 0.5 × 10.6 ± 1.0 µm, n = 100). The morphological characteristics of the isolate matched the descriptions of Colletotrichum acutatum complex (Damm et al. 2012). For molecular identification, the internal transcribed spacer (ITS) region, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), chitin synthase (CHS-1), beta-tubulin 2 (TUB2), and actin (ACT) were sequenced using the primers ITS1/ITS4, GDF/GDR, CHS-79F/CHS-345R, T1/Bt2b, ACT-512F/ACT-783R, respectively (Weir et al. 2012). The obtained sequences were deposited into the GenBank [accession nos. MW584317 (ITS); MW656269 (GAPDH); MW656270 (TUB2); MW656268 (CHS-1); MW656267 (ACT)]. All the sequences showed 94 to 100% similarity with those of C. fioriniae. A neighbor-joining phylogenetic tree was generated by combining all the sequenced loci using MEGA7.0 (Kumar et al. 2016). The isolate TH-M4 clustered with C. fioriniae, having 99% bootstrap support. Base on the morphology and multi-gene phylogeny, isolate TH-M4 was identified as C. fioriniae (Damm et al. 2012). To confirm pathogenicity, 20 healthy leaves of 10 mu oil trees (3-year-old) grown outdoors were inoculated with a drop of spore suspension (106 conidia per mL) of the isolate TH-M4 in September 2020. Another 10 plants were inoculated with sterile water as the control. The leaves were wounded with a sterile toothpick. All the inoculated leaves were covered with black plastic bags to maintain humidity for 2 days. The pathogenicity test was repeated twice. The resulting symptoms were similar to those on the original infected plants, whereas the control leaves remained asymptomatic. The same fungus was re-isolated from the lesions on the inoculated plant, fulfilling Koch’s postulates. C. fioriniae has been recorded as anthracnose pathogen on Mahonia aquifolium (Garibaldi et al. 2020), Paeonia lactiflora (Park et al. 2020), Solanum melongena (Xu et al. 2020), and Juglans regia (Varjas et al. 2020). To our knowledge, this is the first report of C. fioriniae associated with leaf spot disease on mu oil tree in China. This study provided crucial information for epidemiologic studies and appropriate control strategies for this oil plant disease.


Plant Disease ◽  
2012 ◽  
Vol 96 (5) ◽  
pp. 764-764
Author(s):  
X. R. Chen ◽  
Y. P. Xing ◽  
T. X. Zhang ◽  
J. T. Zheng ◽  
J. Y. Xu ◽  
...  

Red bayberry (Myrica rubra Seib. & Zucc.) has great economic importance in eastern and southern China. However, increasing cultivation of red bayberry has resulted in an increase in diseases such as leaf necrosis. In April 2011, a survey was conducted to identify the causal agents of leaf necrosis of red bayberry (cv. Biqi) in Cixi City, Zhejiang Province. Symptoms began with oval and pale brown lesions (2 mm in diameter) that developed into a round to irregular shape (4 to 12 mm in diameter) with pale brown centers and dark brown borders. After approximately 4 months, necrotic lesions expanded to the leaf tips or margins. Black acervuli developed on lesions at later stages. Leaf tissues were surface sterilized with 0.5% sodium hypochlorite for 3 min and rinsed in sterile water before plating onto potato dextrose agar (PDA). Seven isolates were obtained from four samples from four fields on PDA at 25°C. The colonies were cottony white with filiform edges and produced a honey yellow color into the agar at 7 days. Conidia were produced in ink-like fruiting bodies at 4 days at 25°C on PDA. Conidia were straight or slightly curved, fusiform, and five celled with constrictions at the septa. Conidia ranged from 18.7 to 25.8 × 6.2 to 7.7 μm with hyaline apical and basal cells. Thirteen percent of the apical cells had two and the rest had three hyaline appendages ranging from 11.2 to 26.0 μm long. Basal appendages were hyaline, straight, and varied from 3.6 to 5.8 μm long. The color of three median cells was light to dark brown and demonstrated versicolorous. These morphological characteristics matched those of Pestalotiopsis sydowiana (Bresadola) Sutton (1). The morphological identification of the fungus was confirmed by nucleotide blast analysis of the 5.8S subunit and flanking internal transcribed spacers (ITS1 and ITS2) of rDNA regions (GenBank Accession No. JQ322999), which revealed 100% with those of other P. sydowiana isolates (e.g., GenBank Accession No. FJ478105). Koch's postulates were confirmed with 20 healthy leaves of the same size on three branches of three plants in the field. Leaves were wounded by pressing slightly with sterile needles. Mycelial plugs (5 mm in diameter) obtained from the periphery of 7-day-old cultures were placed onto the wounds and covered with sterile-water-saturated cotton. Wounded leaves treated with sterile agar plugs served as controls. The inoculated leaves were sealed in moist plastic bags for 24 h to establish high humid conditions at 21 to 30°C. After 23 days, symptoms on all inoculated leaves were identical to those described above, whereas noninoculated control leaves did not show any symptoms. The fungus was consistently reisolated from the lesions. To our knowledge, this is the first report of P. sydowiana causing leaf necrosis of M. rubra in China. Results can help to better understand the diseases threatening red bayberry trees and develop effective control strategies for better fruit production. Reference: (1) E. F. Guba. Monograph of Monochaetia and Pestalotia. Harvard University Press, Cambridge, MA, 1961.


Plant Disease ◽  
2013 ◽  
Vol 97 (12) ◽  
pp. 1654-1654 ◽  
Author(s):  
A. L. Vu ◽  
M. M. Dee ◽  
J. Zale ◽  
K. D. Gwinn ◽  
B. H. Ownley

Knowledge of pathogens in switchgrass, a potential biofuels crop, is limited. In December 2007, dark brown to black irregularly shaped foliar spots were observed on ‘Alamo’ switchgrass (Panicum virgatum L.) on the campus of the University of Tennessee. Symptomatic leaf samples were surface-sterilized (95% ethanol, 1 min; 20% commercial bleach, 3 min; 95% ethanol, 1 min), rinsed in sterile water, air-dried, and plated on 2% water agar amended with 3.45 mg fenpropathrin/liter (Danitol 2.4 EC, Valent Chemical, Walnut Creek, CA) and 10 mg/liter rifampicin (Sigma-Aldrich, St. Louis, MO). A sparsely sporulating, dematiaceous mitosporic fungus was observed. Fungal plugs were transferred to surface-sterilized detached ‘Alamo’ leaves on sterile filter paper in a moist chamber to increase spore production. Conidia were ovate, oblong, mostly straight to slightly curved, and light to olive-brown with 3 to 10 septa. Conidial dimensions were 12.5 to 17 × 27.5 to 95 (average 14.5 × 72) μm. Conidiophores were light brown, single, multiseptate, and geniculate. Conidial production was polytretic. Morphological characteristics and disease symptoms were similar to those described for Bipolaris oryzae (Breda de Haan) Shoemaker (2). Disease assays were done with 6-week-old ‘Alamo’ switchgrass grown from seed scarified with 60% sulfuric acid and surface-sterilized in 50% bleach. Nine 9 × 9-cm square pots with approximately 20 plants per pot were inoculated with a mycelial slurry (due to low spore production) prepared from cultures grown on potato dextrose agar for 7 days. Cultures were flooded with sterile water and rubbed gently to loosen mycelium. Two additional pots were inoculated with sterile water and subjected to the same conditions to serve as controls. Plants were exposed to high humidity by enclosure in a plastic bag for 72 h. Bags were removed, and plants were incubated at 25/20°C with 50 to 60% relative humidity. During the disease assay, plants were kept in a growth chamber with a 12-h photoperiod of fluorescent and incandescent lighting. Foliar leaf spot symptoms appeared 5 to 14 days post-inoculation for eight of nine replicates. Control plants had no symptoms. Symptomatic leaf tissue was processed and plated as described above. The original fungal isolate and the pathogen recovered in the disease assay were identified using internal transcribed spacer (ITS) region sequences. The ITS region of rDNA was amplified with PCR and primer pairs ITS4 and ITS5 (4). PCR amplicons of 553 bp were sequenced, and sequences from the original isolate and the reisolated pathogen were identical (GenBank Accession No. JQ237248). The sequence had 100% nucleotide identity to B. oryzae from switchgrass in Mississippi (GU222690, GU222691, GU222692, and GU222693) and New York (JF693908). Leaf spot caused by B. oryzae on switchgrass has also been described in North Dakota (1) and was seedborne in Mississippi (3). To our knowledge, this is the first report of B. oryzae from switchgrass in Tennessee. References: (1) D. F. Farr and A. Y. Rossman. Fungal Databases. Systematic Mycology and Microbiology Laboratory, ARS, USDA. Retrieved from http://nt.ars-grin.gov/fungaldatabases/, 28 June 2012. (2) J. M. Krupinsky et al. Can. J. Plant Pathol. 26:371, 2004. (3) M. Tomaso-Peterson and C. J. Balbalian. Plant Dis. 94:643, 2010. (4) T. J. White et al. Pages 315-322 in: PCR Protocols: a Guide to Methods and Applications. M. A. Innis et al. (eds), Acad. Press, San Diego, 1990.


Plant Disease ◽  
2012 ◽  
Vol 96 (1) ◽  
pp. 147-147
Author(s):  
S. H. Lee ◽  
C. K. Lee ◽  
M. J. Park ◽  
H. D. Shin

Aralia elata (Miq.) Seem., known as Japanese angelica tree, is a deciduous shrub belonging to the Araliaceae, which is native to East Asia. The young shoots have long been used in various dishes in East Asia. Commercial cultivation of this shrub, especially in polytunnels, is expanding in Korea. Several diseases including Sclerotinia rot have been known to be present on this plant (1,2). In early September 2007, leaf spot symptoms were first observed on several trees in Hongcheon, Korea. Microscopic observations revealed that the leaf spots were associated with an Ascochyta sp. Further surveys of the Ascochyta leaf spot showed the occurrence of the disease in approximately 5 to 10% of the trees in the 3 ha of commercial fields surveyed in Chuncheon, Gapyeong, Inje, and Jinju, Korea. Initial symptoms on leaves were circular to irregular, brown to dark brown, becoming zonate, and finally fading to grayish brown in the center with a yellow halo. Representative samples were deposited in the herbarium of Korea University. Conidiomata on leaf lesions were pycnidial, amphigenous, but mostly epiphyllous, immersed or semi-immersed in host tissue, light brown to olive brown, and 60 to 200 μm in diameter. Ostioles were papillate, 20 to 35 μm wide, and surrounded by a ring of darker cells. Conidia were hyaline, smooth, cylindrical to clavate, straight to mildly curved, slightly constricted at the septa, medianly one-septate, sometimes aseptate, 8 to 16 × 2.5 to 3.5 μm, and contained small oil drops. These morphological characteristics were consistent with the previous reports of Ascochyta marginata J.J. Davis (3,4). A monoconidial isolate was cultured on potato dextrose agar (PDA) plates and accessioned in the Korea Agricultural Culture Collection (Accession KACC43082). The conidia were readily formed on PDA. Inoculum for the pathogenicity tests was prepared by harvesting conidia from 30-day-old cultures of KACC43082 and a conidial suspension (approximately 2 × 106 conidia/ml) was sprayed onto leaves of three healthy seedlings. Three noninoculated seedlings served as controls. Inoculated and noninoculated plants were covered with plastic bags for 48 h in a glasshouse. After 7 days, typical leaf spot symptoms started to develop on the leaves of the inoculated plants. The fungus, A. marginata, was reisolated from those lesions, confirming Koch's postulates. No symptoms were observed on control plants. Previously, the disease was reported in Japan (4) and China (3). To our knowledge, this is the first report of A. marginata on Japanese angelica trees in Korea. According to our field observations in Korea, the Ascochyta leaf spot mostly occurred on plants growing in a humid environment, especially during the rainy season. The seedlings as well as the trees growing in sunny, well-ventilated plots were nearly free from this disease. Therefore, the growing conditions seemed to be the most important factor for the development and severity of the disease. References: (1) C. K. Lee et al. Plant Pathol. J. 26:426, 2010. (2) S. H. Lee et al. Diseases of Japanese Angelica Tree and Their Control. Research Report 08-10. Korea Forest Research Institute. Seoul, Korea, 2008. (3) J. Sun et al. Acta Mycol. Sin. 14:107, 1995. (4) M. Yoshikawa and T. Yokoyama. Mycoscience 36:67, 1995.


Plant Disease ◽  
2015 ◽  
Vol 99 (2) ◽  
pp. 289-289 ◽  
Author(s):  
Y. Z. Zhu ◽  
W. J. Liao ◽  
D. X. Zou ◽  
Y. J. Wu ◽  
Y. Zhou

In May 2014, a severe leaf spot disease was observed on walnut tree (Juglans regia L.) in Hechi, Guangxi, China. Leaf spots were circular to semicircular in shape, water-soaked, later becoming grayish white in the center with a dark brown margin and bordered by a tan halo. Necrotic lesions were approximately 3 to 4 mm in diameter. Diseased leaves were collected from 10 trees in each of five commercial orchards. The diseased leaves were cut into 5 × 5 mm slices, dipped in 75% ethanol for 30 s, washed three times in sterilized water, sterilized with 0.1% (w/v) HgCl2 for 3 min, and then rinsed five times with sterile distilled water. These slices were placed on potato dextrose agar (PDA), followed by incubating at 28°C for about 3 to 4 days. Fungal isolates were obtained from these diseased tissues, transferred onto PDA plates, and incubated at 28°C. These isolates produced gray aerial mycelium and then became pinkish gray with age. Moreover, the reverse of the colony was pink. The growth rate was 8.21 to 8.41 mm per day (average = 8.29 ± 0.11, n = 3) at 28°C. The colonies produced pale orange conidial masses and were fusiform with acute ends, hyaline, sometimes guttulate, 4.02 to 5.25 × 13.71 to 15.72 μm (average = 4.56 ± 0.31 × 14.87 ± 1.14 μm, n = 25). The morphological characteristics and measurements of this fungal isolate matched the previous descriptions of Colletotrichum fioriniae (Marcelino & Gouli) R.G. Shivas & Y.P. Tan (2). Meanwhile, these characterizations were further confirmed by analysis of the partial sequence of five genes: the internal transcribed spacer (ITS) of the ribosomal DNA, beta-tubulin (β-tub) gene, glyceraldehyde 3-phosphate dehydrogenase (GAPDH) gene, chitin synthase 3(CHS-1) gene, and actin (ACT) gene, with universal primers ITS4/ITS5, T1/βt2b, GDF1/GDR1, CHS1-79F/CHS1-354R, and ACT-512F/ACT-783R, respectively (1). BLAST of these DNA sequences using the nucleotide database of GenBank showed a high identify (ITS, 99%; β-tub, 99%; GAPDH, 99%; CHS-1, 99%; and ACT, 100%) with the previously deposited sequences of C. fioriniae (ITS, KF278459.1, NR111747.1; β-tub, AB744079.1, AB690809.1; GAPDH, KF944355.1, KF944354.1; CHS-1, JQ948987.1, JQ949005.1; and ACT, JQ949625.1, JQ949626.1). Koch's postulates were fulfilled by inoculating six healthy 1-year-old walnut trees in July 2014 with maximum and minimum temperatures of 33 and 26°C. The 6-mm mycelial plug, which was cut from the margin of a 5-day-old colony of the fungus on PDA, was placed onto each pin-wounded leaf, ensuring good contact between the mycelium and the wound. Non-colonized PDA plugs were placed onto pin-wounds as negative controls. Following inoculation, both inoculated and control plants were covered with plastic bags. Leaf spots, similar to those on naturally infected plants, were observed on the leaves inoculated with C. fioriniae within 5 days. No symptoms were observed on the negative control leaves. Finally, C. fioriniae was re-isolated from symptomatic leaves; in contrast, no fungus was isolated from the control, which confirmed Koch's postulates. To our knowledge, this is the first report of leaf disease on walnut caused by C. fioriniae. References: (1) L. Cai et al. Fungal Divers. 39:183, 2009. (2) R. G. Shivas and Y. P. Tan. Fungal Divers. 39:111, 2009.


Plant Disease ◽  
2021 ◽  
Author(s):  
Yue Lian Liu ◽  
Jian Rong Tang ◽  
Ya Li ◽  
Hong Kai Zhou

Wild rice (Oryza rufipogon) has been widely studied and cultivated in China in recent years due to its antioxidant activities and health-promoting effects. In December 2018, leaf spot disease on wild rice (O. rufipogon cv. Haihong-12) was observed in Zhanjiang (20.93 N, 109.79 E), China. The early symptom was small purple-brown lesions on the leaves. Then, the once-localized lesions coalesced into a larger lesion with a tan to brown necrotic center surrounded by a chlorotic halo. The diseased leaves eventually died. Disease incidence was higher than 30%. Twenty diseased leaves were collected from the fields. The margin of diseased tissues was cut into 2 × 2 mm2 pieces, surface-disinfected with 75% ethanol for 30 s and 2% sodium hypochlorite for 60 s, and then rinsed three times with sterile water before isolation. The tissues were plated on potato dextrose agar (PDA) medium and incubated at 28 °C in the dark for 4 days. Pure cultures were produced by transferring hyphal tips to new PDA plates. Fifteen isolates were obtained. Two isolates (OrL-1 and OrL-2) were subjected to further morphological and molecular studies. The colonies of OrL-1 and OrL-1 on PDA were initially light gray, but it became dark gray with age. Conidiophores were single, straight to flexuous, multiseptate, and brown. Conidia were oblong, slightly curved, and light brown with four to nine septa, and measured 35.2–120.3 µm × 10.3–22.5 µm (n = 30). The morphological characteristics of OrL-1 and OrL-2 were consistent with the description on Bipolaris oryzae (Breda de Haan) Shoemaker (Manamgoda et al. 2014). The ITS region, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and translation elongation factor (EF-1α) were amplified using primers ITS1/ITS4, GDF1gpp1/GDR1 gdp2 (Berbee et al. 1999), and EF-1α-F/EF-1α-R EF-1/EF-2 (O’Donnell 2000), respectively. Amplicons of OrL-1 and OrL-2 were sequenced and submitted to GenBank (accession nos. MN880261 and MN880262, MT027091 and MT027092, and MT027093 and MT027094). The sequences of the two isolates were 99.83%–100% identical to that of B. oryzae (accession nos. MF490854,MF490831,MF490810) in accordance with BLAST analysis. A phylogenetic tree was generated on the basis of concatenated data from the sequences of ITS, GAPDH, and EF-1α via Maximum Likelihood method, which clustered OrL-1 and OrL-2 with B. oryzae. The two isolates were determined as B. oryzae by combining morphological and molecular characteristics. Pathogenicity test was performed on OrL-1 in a greenhouse at 24 °C to 30 °C with 80% relative humidity. Rice (cv. Haihong-12) with 3 leaves was grown in 10 pots, with approximately 50 plants per pot. Five pots were inoculated by spraying a spore suspension (105 spores/mL) onto leaves until runoff occurred, and five pots were sprayed with sterile water and used as controls. The test was conducted three times. Disease symptoms were observed on leaves after 10 days, but the controls remained healthy. The morphological characteristics and ITS sequences of the fungal isolates re-isolated from the diseased leaves were identical to those of B. oryzae. B. oryzae has been confirmed to cause leaf spot on Oryza sativa (Barnwal et al. 2013), but as an endophyte has been reported in O. rufipogon (Wang et al. 2015).. Thus, this study is the first report of B. oryzae causing leaf spot in O. rufipogon in China. This disease has become a risk for cultivated wild rice with the expansion of cultivation areas. Thus, vigilance is required.


Plant Disease ◽  
2020 ◽  
Author(s):  
Miaolian Xiang ◽  
Shucheng Li ◽  
Fan Wu ◽  
Xianyang Zhao ◽  
Yinbao Wang ◽  
...  

Tetradium ruticarpum, previously and commonly known as Evodia rutaecarpa, is a tree that produces a fruit which is one of the most important traditional Chinese medicine herbs in China (Zhao et al. 2015). In July 2019, an investigation of diseases of T. ruticarpum was conducted in the farmland of Ruichang County (29.68° N, 115.65° E), Jiujiang City, China. An unknown fruit rot disease was observed and the incidence rate was estimated to be 60% to 70% within a 5,000 m2 area. The early symptoms appeared as small circular to irregular dark brown or black spots on the fruit, which gradually coalesced to a light brown-to-black discoloration and caused fruit rot. To identify the causal agent of the disease, 10 diseased fruits were collected and surface disinfected with 2% sodium hypochlorite for 2 min, 70% ethanol for 30 s, rinsed in sterile water and dried on filter paper. Tissues from non-symptomatic tissue as well as from the margin between healthy and affected edge were incubated on potato dextrose agar (PDA) at 25±1°C (12 h light/dark) with 90% relative humidity for 5 days. The colonies were brown to black with abundant whitish margins. Conidiophores were brown and measured 20.40 – 43.10×1.30 – 4.20 μm (25.47 × 2.35 µm on average, n=50). Conidia produced in single or branched chains, were obclavate or ovoid, approximately 9.90 – 32.80×6.50 – 14.50 μm (28.75×12.57 µm on average, n=50) with 2 to 5 transverse septa and 0 to 3 longitudinal septa. The colonies were consistent with Alternaria alternata (Simmons 2007). For molecular identification, the f partial internal transcribed spacer (ITS) regions, Glyceraldehyde-3-phosphate dehydrogenase (gapdh) genes, translation elongation factor 1-alpha (TEF) and Alternaria major allergen (Alt a1) gene of the isolate were amplified using primers ITS1/ITS4 (White et al. 1990), GDF/GDR (Templeton et al. 1992), EF1-728F/EF1-986R (Carbone and Kohn 1999) and Alt-for/Alt-rev (Hong et al. 2005). Sequence data showed 100% homology to A. alternata (GenBank accessions No.MN625176.1 (570/570 bp), MK683866.1 (618/618 bp), MK637432.1 (281/281 bp), KT315515.1 (488/488 bp)), respectively and the sequence data were deposited into GenBank with accession numbers MN897753 (ITS), MT041998 (gapdh), MT041999 (TEF), and MT042000 (Alt a1). Based on both morphological and molecular characteristics, the pathogen was identified as A. alternata. To confirm pathogenicity, 10 μl of a spore suspension (1.0 × 106 conidia/ml) obtained from 5-day-old PDA cultures of the strain were inoculated on 20 wounded (using sterile needle) and 20 nonwounded healthy T. ruticarpum fruits previously disinfected in 75% ethanol. Control fruits including 20 wounded fruits and 20 nonwounded fruits were inoculated with sterilized water. All fruits were incubated at 25±1°C (12 h light/dark) with 90% relative humidity. Four days later, all the wounded and non-wounded fruits showed the initial symptoms of black rot which was similar to that observed in the field, while the wounded and nonwounded fruits treated with sterile water remained healthy. The same pathogen was again isolated from the inoculated fruits. The pathogenicity experiment was repeated three times with the same results. As far as we know, this is the first report of A. alternata causing fruits rot on T. ruticarpum in China, and the identification of the pathogen will provide useful information for developing effective control strategies.


Plant Disease ◽  
2020 ◽  
Author(s):  
Min Li ◽  
Meijiao Hu ◽  
Zhaoyin Gao ◽  
Xiaoyu Hong ◽  
Chao Zhao ◽  
...  

Ipomoea pes-caprae plays an important role in protecting the tropical and subtropical coastal beach of the world. In 2018, a leaf spot was observed on I. pes-caprae in Xisha islands of China, 13.2–25.8% of leaves were infected. The initial symptoms were small (1–3 mm diameter), single, circular, dark gray spots with a light-yellow center on the leaves. The lesions enlarged and were scattered or confluent, distinct and circular, subcircular or irregular, occasionally vein-limited, pale to dark gray-brown, with a narrow dark brown border surrounded by a diffuse yellow margin. Microscopic observations of the spots revealed that caespituli were dark brown and amphigenous, but abundant on the underside of the leaves. Mycelia were internal. Conidiophores were fasciculate, occasionally solitary, pale olivaceous-brown throughout, 0- to 3-septate, 27.9–115.8 (63.4±22.5) µm × 3.2–5.3 (4.3±0.87) µm (n=100). Conidial scars were conspicuously thickened. Conidia were solitary, hyaline, filiform, acicular to obclavate, straight to slightly curved, subacute to obtuse at the apex, truncate at the base, multi-septate, 21.0–125.5 (60.2±20.1) µm × 2.0–5.0 (3.8±0.83) µm (n=100). Single-conidium isolates were obtained from representative colonies grown on potato dextrose agar (PDA) incubated at 25℃ in the dark. The colonies grew slowly and were dense, white to gray and flat with aerial mycelium. Mycelia were initially white, and then became gray. Conidia were borne on the conidiophores directly. The pure isolate HTW-1 was selected for molecular identification and pathogenicity test, which were deposited in Microbiological Culture Collection Center of Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences. The internal transcribed spacer (ITS) region of rDNA, translation elongation factor 1-alpha (tef1) and histone H3 (his3) genes were amplified with ITS1/ITS4, EF-1 / EF-2, and CYLH3F / CYLH3R primers, respectively (Groenewald et al. 2013). The obtained sequences of HTW-1 were all deposited in GenBank with accession numbers MT410467 for ITS, MT418903 for tef1 and MT418904 for his3. The ITS, tef1 and his3 genes all showed 100% similarity for ITS (JX143582), tef1 (JX143340) and his3 (JX142602) with C. cf. citrulina (MUCC 588; MAFF 239409) from I. pes-caprae in Japan. Based on the morphological characteristics and molecular identification, the pathogen was identified as Cercospora cf. citrulina (Groenewald et al. 2013). The pathogenicity test was conducted by spraying conidial suspension (1×104 conidia/mL) on wounded and unwounded leaves for seedling of I. pes-caprae in greenhouse and in sterile vitro condition. The conidial suspension was prepared using conidia from 30-day-old culture grown on PDA at 25℃ in the dark. Leaf surfaces of seedling in greenhouse were wounded by lightly rubbing with a steel sponge and detached leaf surfaces were wounded by sterile needles. the treatments were sprayed with conidial suspensions on wounded and unwounded leaf surfaces. The control was sprayed with sterile water. After eight days, the typical symptoms of spots which were small, single, circular and dark gray appeared on the inoculated wounded leaves, while the inoculated unwounded leaves and the control leaves were symptomless. The pathogen was only re-isolated from the inoculated wounded leaves. The pathogen may be infected by wound. A total of 20 Cercospora and related species was found on Ipomoea spp. (García et al. 1996). Cercospora cf. citrulina has been reported on I. pes-caprae in Japan, although it was unclear if it was a pathogen or saprophyte (Groenewald et al. 2013). To our knowledge, this is the first report of C. cf. citrulina causing leaf spot of I. pes-caprae in China. This disease could threat the cultivation of I. pes-caprae in China.


Sign in / Sign up

Export Citation Format

Share Document