scholarly journals First Report of Powdery Mildew Caused by Leveillula taurica on Cynanchum kashgaricum in China

Plant Disease ◽  
2012 ◽  
Vol 96 (9) ◽  
pp. 1373-1373
Author(s):  
G. He ◽  
B. Xu ◽  
J. G. Song ◽  
L. L. Zhang ◽  
Z. Y. Zhao ◽  
...  

Cynanchum kashgaricum Liou f., belonging to the family Apocynaceae, is an endemic herbaceous perennial and extremely endangered plant species, only found in the wild in desert regions of Xinjiang, China (3), and is valuable for sand stabilization. In August 2010, a previously unknown and widespread powdery mildew disease was observed on C. kashgaricum growing in the Taklimakan Desert in Xinjiang, China. Disease symptoms included the appearance of a white mycelial coating on the upper surfaces of leaves, while the corresponding abaxial surfaces of infected leaves became chlorotic. As the disease progressed, the infected leaves turned yellow and necrotic. In this survey, the incidence of affected C. kashgaricum plants was 60%. On the basis of microscopic examination, the morphology of the fungus can be described as follows: the primary conidia of the fungus were lanceolate or clavate, with a pointed apex and rounded base, measuring 40.4 to 82.5 × 11.1 to 24.6 μm, with an irregular surface covered by warts; the secondary conidia varied in shape from subcylindrical to cylindrical, with rounded ends, and had lateral borders that were parallel to each other with rounded or truncate bases, measuring 40.5 to 73.5 × 11.2 to 23.9 μm. The ascomata were nearly gregarious and globe-shaped, of dust-colored appearance, and 113 to 267 μm in diameter; they were immersed in dense mycelial tomentum with numerous asci (usually 10 to 18 per ascoma). Numerous, well-developed appendages were present on the lower half of the ascomata; these appendages were irregularly branched and their length was 0.15 to 0.3 times the diameter of the ascomata. The asci were stalked, long or wide ellipsoidal in shape, and 93 to 140 × 27.6 to 52.9 μm. The asci usually contained two ellipsoidal ascospores 24.5 to 49.5 × 18.3 to 29.5 μm. On the basis of morphologic characteristics, the fungus was identified as Leveillula taurica (2). A voucher specimen of the fungus under the identifier HMTU09021 was deposited in the Mycological Herbarium of Tarim University (HMTU). To verify the identity of the fungus, the internal transcribed spacer (ITS) rDNA was amplified and sequenced, and the sequences were deposited as GenBank Accession No. JN861731. Comparison with sequences in the GenBank database revealed that the ITS sequence showed 100% homology with the sequence of L. taurica on Capsicum annuum (Accession No. GQ167201) and Lepidium latifolium (Accession No. AB044349). Thus, the pathogen was identified as L. taurica on the basis of the anamorphic and teleomorphic morphological characters and the ITS sequence. To our knowledge, while L. taurica infection in plants of the family Apocynaceae has been reported around the world (1), in east Asia only a single report of C. glaucum infection in this genus has occurred, in Afghanistan (1). This is the first report of L. taurica infection of C. kashgaricum. Outbreaks of this powdery mildew could not only threaten growth of the endangered plant but also accelerate local ecological deterioration. References: (1) K. Amano. Host Range and Geographical Distribution of the Powdery Mildew Fungi, 2nd ed. Japan Scientific Societies Press, Tokyo, Japan, 1986. (2) U. Braun. A Monograph of the Erysiphales (Powdery Mildews). Nova Hedwigia Beiheft 89:1, 1987. (3) F. Ying et al. Acta Bot. Boreali-Occidentalia Sin. 23:263, 2003.

Plant Disease ◽  
2011 ◽  
Vol 95 (7) ◽  
pp. 879-879
Author(s):  
B. Xu ◽  
J. G. Song ◽  
G. He ◽  
M. F. Lv ◽  
L. L. Zhang ◽  
...  

Hexinia polydichotoma (Ostenf) H.L. Yang (synonym Chondrilla polydichotoma Ostenf.) is an indigenous sand-binding plant that is widely distributed only in the desert regions of Northwest China. During the summer of 2007, severe outbreaks of a previously unknown powdery mildew were observed in the Taklimakan Desert in Xinjiang, China. Almost 95% of the plants surveyed were affected in this area. The upper surfaces of the stem were covered with white mycelia and the corresponding abaxial surfaces of infected leaves were chlorotic. Affected young, green stems also showed extended chlorosis. As the disease progressed, the infected stems turned yellow and necrotic. Heavy infection resulted in death of the plants. The primary conidia of the fungus were lanceolate with apical pointed, rarely cylindrical or subcylindrical with attenuated apex. They measured 53 to 73 × 15 to 21 μm and had a surface with a net of irregular rides and warts. Subcylindrical or subclavate secondary conidia with rounded ends measuring 50 to 77 × 13 to 20 μm were observed. The ascomata are subgregarious to scattered, globose, and 165 to 200 μm in diameter that are immersed in the dense mycelial tomentum. Numerous and well-developed appendages on the lower half of the ascomata are irregularly branched and can be as long as up to the ascomata diameter. The appendages measure 79 to 106 × 5 to 10 μm and are aseptate, thin walled, and smooth. Asci are numerous (usually more than 20 per ascoma), stalked, clavate-ovoid to nearly cylindrical, and contain two spores (rarely one or three). Ascospores are ellipsoid, hyaline, and measure 25 to 35 × 14 to 20 μm. On the basis of these characteristics, the fungus was identified as Leveillula lactucae-serriolae (2). A voucher specimen was deposited in the Herbarium of Martin Luther University, Halle, Germany (Accession No. HAL 2439F). To confirm the identification, the internal transcribed spacer (ITS) rDNA was amplified and sequenced, and deposited in GenBank (Accession No. HQ821500). Comparison with sequences available in the GenBank database revealed that the ITS sequence shares 99% similarity with that of L. lactucaeserriolae on Lactuca serriola from Iran (Accession No. AB044375.1) (1). Thus, the pathogen was identified as L. lactucae-serriolae based on the host plant species, anamorph morphology, and ITS sequence. Pathogenicity was confirmed through inoculation by gently pressing a diseased stem onto the stem of healthy H. polydichotoma plants. Five inoculated plants were kept under a plastic humid chamber, whereas the same number of noninoculated plants served as the control. The plants were placed under natural conditions (25 to 28°C) with 80 to 90% humidity. At 15 days after inoculation, typical symptoms of powdery mildew developed on the inoculated plants. No symptoms were seen on the control plants. To our knowledge, this is the first report of L. lactucaeserriolae in China and the first record of L. lactucae-serriolae on H. polydichotoma in the world ( http://nt.ars-grin.gov/fungaldatabases/index.cfm ). Because the plant is becoming widely cultivated in the Taklimakan Desert for use in sand-binding, the powdery mildew poses a serious threat to desertification control. References: (1) S. A. Khodaparast et al. Mycol Res. 105:909. 2001. (2) S. A. Khodaparast et al. Mycoscience 43:459, 2002.


Plant Disease ◽  
2010 ◽  
Vol 94 (1) ◽  
pp. 132-132 ◽  
Author(s):  
R. K. Sampangi ◽  
D. A. Glawe ◽  
T. Barlow ◽  
S. K. Mohan

Mentzelia laevicaulis (Dougl. ex Hook.) Torr. & Gray (Loasaceae; common names are giant blazing star and smoothstem blazing star) is widely distributed throughout western North America in sites ranging from lowland deserts to mountainous areas in Canada and the United States. During a plant disease survey in June 2007 in the Owyhee Mountains, Canyon County, Idaho, leaves of M. laevicaulis displaying whitish, mycelial growth were collected from plants growing on stream banks and gravelly road embankments. Diseased leaves exhibited localized, chlorotic discolorations associated with signs of a powdery mildew. Of approximately 20 plants at the site, 50% were infected. White mycelia and conidia were more abundant on the adaxial leaf surfaces than on the abaxial surfaces. Severely diseased leaves were buckled and slightly twisted. By August and through September, sporulation was greatest on mature plants, and lowermost leaves were completely covered with flocculose, dense, white mycelia. Dimorphic conidia were lanceolate or cylindrical and measured (44-) 46 to 67 (-71) × (14-) 14.5 to 20 (-21) μm. DNA was extracted and PCR was used to amplify the internal transcribed spacer (ITS) region as described previously (2), except that primers ITS 5 and P3 (4) were used. The resulting 633-bp sequence (GenBank Accession No. GQ860947) included a 616-bp region identical to a sequence reported previously for Leveillula taurica (Lév.) Arnaud from eastern Washington (GenBank No. AY912077), as well as ITS regions from L. taurica previously reported from Iran (GenBank No. AB048350) (2) and Australia (GenBank No. AF 073351) (2). Based on the ITS sequence, the present fungus grouped within Khodaparast et al. (3) Clade 1 that included L. taurica strains they distinguished from other, superficially similar species of Leveillula. On the basis of morphological and sequence data, the fungus was determined to be L. taurica (1,3). A voucher specimen was deposited in the Mycology Herbarium (WSP) at Washington State University. To our knowledge, this is the first report of a named powdery mildew species from a member of the Loasaceae. The only previous report of a powdery mildew on a loasaceous host was an undetermined Oidium sp. on a species of Mentzelia (1). The discovery of L. taurica on a previously unknown native host species is further evidence that this introduced pathogen is becoming endemic to the Pacific Northwest. Native host species, such as M. laevicaulis, may play a role in the epidemiology of powdery mildew diseases caused by L. taurica on crop and ornamental species in the Pacific Northwest. References: (1) U. Braun. Beih. Nova Hedwigia 89:1, 1987. (2) D. A. Glawe et al. Mycol. Prog. 4:291, 2005. (3) S. A. Khodaparast et al. Mycol. Res. 105:909, 2001. (4) S. Takamatsu and Y. Kano. Mycoscience 42:135, 2001.


Plant Disease ◽  
2004 ◽  
Vol 88 (6) ◽  
pp. 681-681
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
M. L. Gullino

Aquilegia flabellata Sieb. and Zucc. (columbine) is a perennial garden species belonging to the family Ranunculaceae. During the summer of 2003, a severe outbreak of a previously unknown powdery mildew was observed in several gardens near Biella (northern Italy). Upper surfaces of leaves were covered with a white mycelium and conidia, and as the disease progressed infected leaves turned yellow and died. Foot cell was cylindric and appressorium lobed. Conidia were hyaline, ellipsoid, and measured 31.2 to 47.5 × 14.4 to 33 μm (average 38.6 × 21.6 μm). Fibrosin bodies were not present. Cleistothecia were globose, brown, had simple appendages, ranged from 82 to 127 (average 105) μm in diameter, and contained one to two asci. Ascocarp appendages measured five to eight times the ascocarp diameter. Asci were cylindrical (ovoidal) and measured 45.3 to 58.2 × 30.4 to 40.2 μm. Ascospores (three to four per ascus) were ellipsoid or cylindrical and measured 28.3 to 31.0 × 14.0 to 15.0 μ;m. On the basis of its morphology, the pathogen was identified as Erysiphe aquilegiae var. aquilegiae (1). Pathogenicity was confirmed by gently pressing diseased leaves onto leaves of five, healthy A. flabellata plants. Five noninoculated plants served as controls. Inoculated and noninoculated plants were maintained in a garden where temperatures ranged between 20 and 30°C. After 10 days, typical powdery mildew symptoms developed on inoculated plants. Noninoculated plants did not show symptoms. To our knowledge, this is the first report of the presence of powdery mildew on Aquilegia flabellata in Italy. E. communis (Wallr.) Link and E. polygoni DC. were reported on several species of Aquilegia in the United States (2), while E. aquilegiae var. aquilegiae was previously observed on A. flabellata in Japan and the former Union of Soviet Socialist Republics (3). Specimens of this disease are available at the DIVAPRA Collection at the University of Torino. References: (1) U. Braun. Nova Hedwigia, 89:700, 1987. (2) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society, St Paul, MN, 1989. (3) K. Hirata. Host Range and Geographical Distribution of the Powdery Mildews. Faculty of Agriculture, Niigata University, 1966.


2018 ◽  
Vol 100 (2) ◽  
pp. 353-353
Author(s):  
Hugo Beltrán-Peña ◽  
Alma Rosa Solano-Báez ◽  
Miguel Ángel Apodaca-Sánchez ◽  
Moisés Camacho-Tapia ◽  
Rubén Félix-Gastélum ◽  
...  

2010 ◽  
Vol 11 (1) ◽  
pp. 45 ◽  
Author(s):  
Dean A. Glawe ◽  
Tess Barlow ◽  
Jordan E. Eggers ◽  
Philip B. Hamm

In August 2009, a grower reported a disease affecting nearly all plants in a drip-irrigated field of sweet pepper cv. Excalibur in Umatilla Co., OR. The fungus was determined to be Leveillula taurica (Lév.) G. Arnaud, previously unreported from this host in Oregon or from field-grown peppers in the Pacific Northwest. This report documents the taxonomic determination of this species and provides information about the disease outbreak, including economic impact. Accepted for publication 18 May 2010. Published 8 July 2010.


Author(s):  
Yi-Ting Xiao ◽  
Hiran A. Ariyawansa ◽  
Chao-Jen Wang ◽  
Tung-Chin Huang ◽  
Yuan-Min Shen

Plant Disease ◽  
2021 ◽  
Author(s):  
José Francisco Díaz-Nájera ◽  
Sergio Ayvar-Serna ◽  
Antonio Mena-Bahena ◽  
Guadalupe Arlene Mora-Romero ◽  
Karla Yeriana Leyva-Madrigal ◽  
...  

Cucurbita argyrosperma, commonly named as winter or cushaw squash, is highly sought for its seeds, which have important uses in culinary arts. During the autumn 2021, powdery mildew-like signs and symptoms were observed on cushaw squash in several commercial fields located in Cocula, Guerrero, Mexico. Signs were initially appeared as whitish powdery patches on both sides of leaves and then covering entire leaves and causing premature senescence. The disease incidence was estimated to be 80% in about 1000 plants in two fields. The mycelium was amphigenous, persistent, white in color, and occurred in dense patches. A voucher specimen was deposited in the Herbarium of the Colegio Superior Agropecuario del Estado de Guerrero under the accession number CSAEG22. For the morphological characterization by light microscopy, fungal structures were mounted in a drop of lactic acid on a glass slide. Microscopic examination showed nipple-shaped hyphal appressoria. Conidiophores (n = 30) were straight, 100 to 190 × 10 to 12 μm and produced 2 to 6 conidia in chains. Foot-cells were cylindrical, 41 to 78 μm long, followed by 1 to 2 shorter cells. Conidia (n = 100) were ellipsoid-ovoid to barrel-shaped, 29.5 to 39.1 × 19.4 to 22.7 μm, and contained conspicuous fibrosin bodies. Germ tubes were produced from a lateral position on conidia. Chasmothecia were not observed during the growing season. The morphological characters were consistent with those of the anamorphic state of Podosphaera xanthii (Braun and Cook 2012). For further confirmation, total DNA was extracted from conidia and mycelia following the CTAB method (Doyle and Doyle 1990), and the internal transcribed spacer (ITS) region and part of the 28S gene were amplified by PCR, and sequenced. The ITS region of rDNA was amplified using the primers ITS5/ITS4 (White et al. 1990). For amplification of the 28S rRNA partial gene, a nested PCR was performed using the primer sets PM3 (Takamatsu and Kano 2001)/TW14 (Mori et al. 2000) and NL1/TW14 (Mori et al. 2000) for the first and second reactions, respectively. Phylogenetic analyses using the Maximum Likelihood method, including ITS and 28S sequences of isolates of Podosphaera spp. were performed and confirmed the results obtained in the morphological analysis. The isolate CSAEG22 grouped in a clade with isolates of Podosphaera xanthii. The ITS and 28S sequences were deposited in GenBank under accession numbers OL423329 and OL423343, respectively. Pathogenicity was confirmed by gently dusting conidia from infected leaves onto ten leaves of healthy C. argyrosperma plants. Five non-inoculated leaves served as controls. The plants were maintained in a greenhouse at 25 to 35 ºC, and relative humidity of 60 to 70%. All inoculated leaves developed similar signs to the original observation after 10 days, whereas control leaves remained symptomless. Microscopic examination of the fungus on inoculated leaves showed that it was morphologically identical to that originally observed on diseased plants, fulfilling Koch’s postulates. Podosphaera xanthii has been previously reported on C. maxima, C. moschata, and C. pepo in Mexico (Yañez-Morales et al. 2009; Farr and Rossman 2021). To our knowledge, this is the first report of P. xanthii causing powdery mildew on C. argyrosperma in Mexico. This pathogen is a serious threat to C. argyrosperma production in Mexico and disease management strategies should be developed.


Plant Disease ◽  
2021 ◽  
Author(s):  
Alma Rosa Solano-Báez ◽  
Santos Gerardo Leyva-Mir ◽  
Moises Camacho-Tapia ◽  
Alfonso Arellano Victoria ◽  
Geremias Rodríguez-Bautista ◽  
...  

Wild blackberry species (Rubus spp. L.; Rosaceae) represents an invaluable source of genes for the generation of new varieties, but also serve as a primary source of disease inoculum. During April of 2020, symptoms of powdery mildew were observed on four populations of wild blackberry species located in the states of Chiapas (16°59'11"N, 92°59'07"W; 16°47'08"N, 92°31'05"W) and Michoacán (19°37'17"N, 100°08'59"W; 19°29'25"N, 101°32'54"W), Mexico. Signs of the pathogen were white powdery masses mainly on the top of new shoots. Symptoms included yellowing, necrosis, and early defoliation of the plants. Hyphae were tin-walled, hyaline, smooth, and 4.0–9.0 mm wide. Appressoria were indistinct -to- nipple-shaped. Conidiophores (n=30, 75–225 × 10.5–13.5 μm) were straight, and unbranched with cylindrical foot cells (n=30, 31.5–158 × 8–13.5 μm), straight, somewhat widening upwards, followed by 1–3 shorter cells. Conidia (n=100; 25.5–38.5 × 9.5–22.5 μm) were catenulate, ellipsoid-ovoid -to- doliiform, containing fibrosin bodies (in 3% KOH). Germ tubes (n=30, 13.5–40.5 × 4.5 μm) emerged laterally, and were unbranched with slightly swollen tips. Chasmothecia were not found. Morphological characters of the fungus in all samples corresponded to the previous descriptions of Podosphaera aphanis by Braun and Cook (2012) and Stevanovi´c et al. (2020). Voucher specimens were deposited in the Department of Agricultural Parasitology Herbarium at the Chapingo Autonomous University under accessions UACH421, UACH423, UACH425, UACH426. To confirm the species identification, the internal transcribed spacer (ITS) of one sample was amplified using the primers ITS5 (White et al. 1990) and P3 (Kusaba and Tsuge, 1995) and sequenced. The sequence was deposited in GenBank (accession number MW988591). A phylogenetic analysis using Bayesian inference and maximum likelihood was performed (Hernández-Restrepo et al. 2018) and included other Podosphaera species (Takamatsu et al. 2010). The sequence from the isolate UACH426 clustered with the strain MUMH1871 of P. aphanis forming a definite clade and remained as a sister taxon of P. pannosa. Pathogenicity was verified through inoculation by gently dusting conidia from one powdery mildew patch onto leaves of five healthy blackberry plants of each specie. The same number of noninoculated plants served as controls. All plants were maintained in a greenhouse at 25–30°C with 75% relative humidity. All inoculated plants developed powdery mildew symptoms after 12 days, whereas no symptoms were observed on noninoculated plants. The fungus recovered from the inoculated plants was morphologically identical to that originally observed on diseased blackberry plants, demonstrating the pathogenicity of the fungus. Based on morphological data and phylogenetic analysis, the fungus was identified as P. aphanis. This fungus has been reported to cause powdery mildew on blackberry plants in Serbia (Stevanovi´c et al. 2020). This is the first report of P. aphanis causing powdery mildew on wild backberry species in Mexico according to Farr and Rossman (2021). The primary source of inoculum of powdery mildew for commercial plantings is wild blackberry plants from noncultivated areas and may warrant control of wild populations.


Plant Disease ◽  
2021 ◽  
Author(s):  
In-Young Choi ◽  
Ho-Jong Ju ◽  
Kui-Jae Lee ◽  
Hyeon-Dong Shin

Verbena bonariensis L., named as purple-top vervain or Argentinian vervain, is native to tropical South America. It is cultivated worldwide as an ornamental plant. During summer and autumn of 2020, over 50% of the leaves of V. bonariensis were found infected with powdery mildew in a flower garden in Seoul (37°35'19"N 127°01'07"E), Korea. White, superficial mycelia developed initially on the leaves and subsequently covered surfaces of leaves and stems, are resulting in leaf discoloration, early defoliation, and shoots distortion. Heavily infected plants lost ornamental value. A representative voucher specimen was deposited in the Korea University herbarium (KUS-F32168). Morphological characterization and measurements of conidiophores and conidia were carried out using fresh samples. Microscopic observation showed that aAppressoria on the superficial hypha were nipple-shaped, but rarely found or nearly absent. Conidiophores (n = 30) were cylindrical, 110 to 220 × 10 to 12 µm, and produced 2 to 5 immature conidia in chains with a sinuate outline, followed by 2 to 3 short cells. Foot-cells of conidiophores were straight, cylindrical, and 46 to 90 μm long. Conidia (n = 30) were hyaline, ellipsoid to doliiform, 28 to 40 × 18 to 24 μm with a length/width ratio of 1.3 to 2.0, and contained small be like oil-like drops, but without distinct fibrosin bodies. Primary conidia were apically rounded and sub-truncate at the base. Germ tubes were produced at perihilar position of the conidia. Chasmothecia were not observed. These morphological characteristics were typical of the conidial stage of the genus Golovinomyces (Braun and Cook 2012, Qiu et al. 2020). To identify the fungus, rDNA was extracted from the voucher sample. PCR products were amplified using the primer pair ITS1F/PM6 for internal transcribed spacer (ITS), and PM3/TW14 for the large subunit (LSU) of the rDNA (Takamatsu and Kano 2001). The resulting sequences were registered to GenBank (MW599742 for ITS, and MW599743 for LSU). Using Blast’n search of GenBank, sequences showed 100% identity for ITS and LSU with G. ambrosiae (MT355557, KX987303, MH078047 for ITS, and AB769427, AB769426 for LSU), respectively. Thus, based on morphology and molecular analysis, the isolate on V. bonariensis in Korea was identified as G. ambrosiae (Schwein.) U. Braun & R.T.A. Cook. Pathogenicity tests were carried out by touching an infected leaf onto healthy leaves of disease-free pot-grown plants using a replication of five plants, with five non-inoculated plants used as controls. After 7 days, typical powdery mildew colonies started to appear on the inoculated leaves. The fungus on inoculated leaves was morphologically identical to that originally observed in the field. All non-inoculated control leaves remained symptomless. On different global Verbena species, tThere have been many reports of Golovinomyces powdery mildews including G. cichoracearum s.lat., G. longipes, G. monardae, G. orontii s.lat., and G. verbenae (Farr and Rossman 2021). In China, G. verbenae was recorded on V.erbena phlogiflora (Liu et al. 2006). Golovinomyces powdery mildew has not been reported on Verbena spp. in Korea. Powdery mildew has been reported on V. bonariensis in California, but identity of the causal agent had not been reported. To our knowledge, this is the first report on the identity of the powdery mildew caused by G. ambrosiae on V. bonariensis in Korea. Since heavily infected plants lost ornamental value, appropriate control measures should be developed.


Plant Disease ◽  
2014 ◽  
Vol 98 (4) ◽  
pp. 571-571 ◽  
Author(s):  
H. H. Xing ◽  
C. Liang ◽  
S. E. Cho ◽  
H. D. Shin

Japanese spiraea (Spiraea japonica L.f.), belonging to Rosaceae, is widely planted for its ornamental value in China. Since July 2011, powdery mildew infections on leaves and stems of Japanese spiraea have been noticed in some parks and gardens of Chengyang District in Qingdao City, China (GPS coordinates 36°31′04.22″ N, 120°39′41.92″ E). Symptoms first appeared as white spots covered with mycelium on both side of the leaves and young stems. As the disease progressed, abundant mycelial growth covered the whole shoots and caused growth reduction and leaf distortion with or without reddening. A voucher specimen was deposited in the herbarium of Qingdao Agricultural University (Accession No. HMQAU13013). Hyphae were flexuous to straight, branched, septate, 5 to 7 μm wide, and had nipple-shaped appressoria. Conidiophores arising from the upper surface of hyphal cells produced 2 to 5 immature conidia in chains with a crenate outline. Foot-cells of conidiophores were straight, 60 to 125 × 7 to 9 μm, and followed by 1 to 2 shorter cells. Conidia were ellipsoid-ovoid to doliiform, measured 25 to 32 × 12 to 15 μm with a length/width ratio of 1.8 to 2.6, and had distinct fibrosin bodies. Chasmothecia were not found. The structures and measurements were compatible with the anamorphic state of Podosphaera spiraeae (Sawada) U. Braun & S. Takam. as described before (1). The identity of HMQAU13013 was further confirmed by analysis of nucleotide sequences of the internal transcribed spacer (ITS) regions amplified using the primers ITS1/ITS4 (4). The resulting 564-bp sequence was deposited in GenBank (Accession No. KF500426). A GenBank BLAST search of complete ITS sequence showed 100% identity with that of P. spiraeae on S. cantoniensis (AB525940). A pathogenicity test was conducted through inoculation by gently pressing a diseased leaf onto five healthy leaves of a potted Japanese spiraea. Five non-inoculated leaves served as controls. The plants were maintained in a greenhouse at 22°C. Inoculated leaves developed typical symptoms of powdery mildew after 5 days, but the non-inoculated leaves remained symptomless. The fungus presented on the inoculated plant was morphologically identical to that originally observed on diseased plants, fulfilling Koch's postulates. Powdery mildew of S. japonica caused by P. spiraeae has been recorded in Japan, Poland, and Switzerland (2,3). To our knowledge, this is the first report of powdery mildew caused by P. spiraeae on Japanese spiraea in China. References: (1) U. Braun and R. T. A. Cook. Taxonomic Manual of the Erysiphales (Powdery Mildews), CBS Biodiversity Series No.11. CBS, Utrecht, 2012. (2) D. F. Farr and A. Y. Rossman. Fungal Databases, Systematic Mycology and Microbiology Laboratory, ARS, USDA. Retrieved from http://nt.ars-grin.gov/fungaldatabases/ September 10, 2013. (3) T. Kobayashi. Index of Fungi Inhabiting Woody Plants in Japan. Host, Distribution and Literature. Zenkoku-Noson-Kyoiku Kyokai Publishing Co. Ltd., Tokyo, 2007. (4) S. Matsuda and S. Takamatsu. Mol. Phylogenet. Evol. 27:314, 2003.


Sign in / Sign up

Export Citation Format

Share Document