scholarly journals Evaluation of Oxathiapiprolin for the Management of Sunflower Downy Mildew

Plant Disease ◽  
2019 ◽  
Vol 103 (10) ◽  
pp. 2498-2504 ◽  
Author(s):  
Ryan M. Humann ◽  
Keith D. Johnson ◽  
Michael J. Wunsch ◽  
Scott M. Meyer ◽  
James G. Jordahl ◽  
...  

Downy mildew is a yield-limiting disease of sunflower, caused by the pathogen Plasmopara halstedii. Zoospore infection of root tissue shortly after planting results in systemic infection, causing postemergence damping off or severe stunting and head sterility. Although fungicide-applied seed treatments can be an effective management tool, the pathogen is resistant to phenylamide fungicides in many growing regions, and other available fungicides have limited efficacy. Oxathiapiprolin, the first member of the piperidinyl thiazole isoxazoline fungicides, was evaluated for efficacy on downy mildew in field trials conducted from 2011 to 2015 in North Dakota. Throughout the course of the study, the rate range was narrowed from active ingredient (a.i.) at 0.45 to 116.0 µg a.i. seed−1 to an optimal effective rate of 9.37 to 18.75 µg a.i. seed−1. Within that optimal range, the downy mildew incidence of sunflower planted with oxathiapiprolin-treated seed was significantly lower than the incidence in the nontreated sunflower in all 11 trials with disease pressure. Additionally, downy mildew incidence of sunflower planted with oxathiapiprolin-treated seed was significantly lower than sunflower planted with competitive commercially available fungicide-treated seed in 10 of those 11 trials. The use of oxathiapiprolin by sunflower growers is likely to reduce disease incidence and subsequent yield loss to downy mildew.

Plant Disease ◽  
2002 ◽  
Vol 86 (5) ◽  
pp. 543-546 ◽  
Author(s):  
R. J. Sayler ◽  
S. M. Southwick ◽  
J. T. Yeager ◽  
K. Glozer ◽  
E. L. Little ◽  
...  

Bacterial canker is one of the most economically important diseases of stone fruit trees, including ‘French’ prune (Prunus domestica). Field trials were conducted to evaluate the effect of rootstock selection and budding height on the incidence and severity of bacterial canker in four orchards with low to high disease pressure. Treatments included French prune scions low-grafted on ‘Lovell’ peach (Prunus persica) rootstocks as well as Myrobalan 29C (Prunus cerasifera) plum rootstocks grafted at 15, 50, and 90 cm above the rootstock crown. Another treatment consisted of growing Myrobalan 29C plum rootstocks in the field for one growing season, then field-grafting French prune buds onto rootstock scaffolds. Lovell peach rootstock provided the greatest protection from bacterial canker as measured by disease incidence and tree mortality in all orchards. Field-budded rootstocks and rootstocks grafted at the highest budding height provided moderate levels of resistance to bacterial canker. These treatments reduced the incidence but not the severity of disease.


2017 ◽  
Vol 44 (1) ◽  
pp. 19-25 ◽  
Author(s):  
J.M. Sarver ◽  
R.S. Tubbs ◽  
J.P. Beasley ◽  
A.K. Culbreath ◽  
T.L. Grey ◽  
...  

ABSTRACT Achieving and maintaining an adequate plant stand is a major priority when making planting and early season management decisions in peanut (Arachis hypogaea L.). Unpredictable and often extreme weather and high disease pressure in the southeastern United States can contribute to poor emergence and below-optimum plant stands. When plant stand is affected, replanting may be agronomically justified. This study was designed to determine i) the effect of plant stand on pod yield, market grade, and disease incidence in peanut seeded in a twin row pattern, (ii) if replanting is a viable option in a field with a below adequate stand and, iii) the best method for replanting peanut when an adequate stand is not achieved. Field trials were established at two locations in south Georgia in 2012 and 2013 to evaluate peanut production at four plant stands (7.4, 9.8, 12.3, and 14.8 plants/m [total plants/m across both units, or ‘twins' of the twin row pattern) and four replant methods (no replant, destroy the original stand and replant at a full seeding rate, add a reduced rate of seed to supplement the original stand with a single row between the original rows, and supplement with two additional rows with one between and the other next to the original rows). Replanting occurred when the stand had been established, an average of 24 days after initial planting. Pod yield at a stand of 12.3 plants/m was 6.6 and 5.8% greater than at a stand of 7.4 and 9.8 plants/m, respectively, with no benefit from increasing plant stand beyond 12.3 plants/m. Market grade was also maximized at 12.3 plants/m. Disease incidence was unaffected by plant stand. Yield was increased by supplementing an initial stand of 9.8 plants/m in both a single additional row and in two additional rows by 8.3 and 6.6%, respectively. A full replant of the original stand always resulted in lower yield, while grade was slightly increased in the full replant treatment. While an initial stand of 12.3 plants/m was needed in order to maintain yield potential, replanting via supplemental seed addition can recover lost yield at stands below this level.


2019 ◽  
Vol 20 (3) ◽  
pp. 160-164
Author(s):  
Sudha GC Upadhaya ◽  
Venkataramana Chapara ◽  
Mukhlesur Rahman ◽  
Luis E. del Río Mendoza

The efficacy of five fungicide seed treatments as a management tool against blackleg on spring canola was evaluated under greenhouse and field conditions in North Dakota. Blackleg, caused by Leptosphaeria maculans, inflicts the greatest yield losses when infecting seedlings before they reach the six-leaf growth stage. In greenhouse studies, 10-day-old seedlings were inoculated with L. maculans spore suspensions and evaluated 12 days later and at maturity or inoculated 12, 20, or 28 days after planting and evaluated at maturity. In field trials conducted in 2017 and 2018, severity was assessed at maturity. In the greenhouse, all fungicide seed treatments reduced (P = 0.05) disease severity at the seedling stage, but only the protection provided by Obvius (fluxapyroxad + pyraclostrobin + metalaxyl) and Helix Vibrance (mefenoxam + fludioxonil + sedaxane + difenoconazole + thiamethoxam) reduced (P < 0.05) severity at the adult stage; however, none of them provide effective protection when plants were inoculated 20 days after planting or later. In field trials, none of the treatments significantly (P > 0.05) improved plant stand and yield or reduced disease incidence and severity. Although fungicide seed treatment is a valuable tool, it should not be used as the only method to manage blackleg disease.


Plant Disease ◽  
2014 ◽  
Vol 98 (11) ◽  
pp. 1580-1580 ◽  
Author(s):  
R. Bán ◽  
A. Kovács ◽  
K. Körösi ◽  
M. Perczel ◽  
Gy. Turóczi

Downy mildew of sunflower, caused by Plasmopara halstedii (Farlow) Berlese et de Toni, is an economically important disease in Hungary and much of Europe. The known pathotypes (races) of the pathogen influence the resistance genes (Pl genes) incorporated into new sunflower hybrids to manage the disease. There are at least 36 pathotypes of P. halstedii worldwide (3), but the number of races is increasing rapidly. In 2010, race 704 was identified in Hungary for the first time (2). Race 704 has been reported to confer virulence on Pl6, a broad spectrum resistance gene that is widely used in sunflower hybrids. This has coincided with a significant increase in disease severity since 2010 in the country. Our objectives are to continuously monitor this pathogen and identify pathotypes of P. halstedii. Because of the unfavorable weather conditions for downy mildew in 2013, samples were collected at a single site (Kunszentmárton, South Hungary) in the beginning of July from NK Neoma sunflower hybrids. Disease incidence (early and late primary infection) was as high as 40%. Systemically mildewed plants showed severe stunting and leaf chlorosis, signs and symptoms consistent with downy mildew. P. halstedii was identified microscopically. Examination of isolates was carried out using a set of sunflower differential lines based on the internationally standardized method for race identification of P. halstedii (1). Inoculum of the isolates was increased on a susceptible cultivar (cv. Iregi szürke csíkos) and tested by inoculating 3-day-old seedlings of sunflower differential lines. Inoculated seedlings were planted in trays in glasshouse. After 8 to 9 days, seedlings were sprayed with distilled water, covered with black plastic bags, and left overnight to induce sporulation. Disease incidence was determined by examining cotyledons at 9 days after inoculation for sporulation and true leaves on 12 to 13 days after inoculation for secondary symptoms, such as leaf chlorosis and stunting (1). While several differential lines showed no typical susceptible/resistant reactions, i.e., the infection was much lower than 100%, it was concluded that the isolates were mixtures of different P. halstedii pathotypes. To obtain single isolates, we collected zoosporangia from the differential lines in question separately, and then inoculated the seedlings of the same genotype and a uniformly susceptible line. A single isolate caused as high as 100% infection on HA-335, containing resistance gene Pl6. Subsequent evaluation of this isolate with the entire differential set resulted in an aggregate virulence phenotype of 714. As resistance gene Pl6 is incorporated to the majority of sunflower hybrids grown in Hungary, pathotypes virulent on this gene, such as 704 and 714, are likely to spread. This underscores the need to prove the resistance to these races in the newly registered hybrids and for further research to identify P. halstedii pathotypes. It is also important to establish the identity of this new pathotype by already discovered 714 pathotypes in other countries like France and Italy and to discover the real conditions of local evolving of new pathogens. To our knowledge, this is the first report of pathotype 714 of P. halstedii in both Hungary and Central Europe. References: (1) T. J. Gulya et al. Helia 14:11, 1991. (2) K. Rudolf et al. Növényvédelem 47:279, 2011. (3) F. Virányi and O. Spring. Eur. J. Plant Pathol. 129:207, 2011.


Author(s):  
Kazi Kader ◽  
Scott Erickson ◽  
Robyne Bowness ◽  
Mark A Olson ◽  
Syama Chatterton

Diseases such as Sclerotinia white mold (SWM) caused by the fungus Sclerotinia sclerotiorum (Lib.) de Bary and Botrytis grey mold (BGM) caused by the fungus Botrytis cinerea Pers. may be limiting factors for lentil production in wetter areas of Alberta, Canada. Field trials were conducted at the Lethbridge Research and Development Centre from 2013-2015 to evaluate the response of lentil cultivars to SWM and BGM and yield impacts. Ten lentil cultivars from five market classes were evaluated under irrigated and dry land plots with two planting densities (120 plants m-2 and 160 plants m-2).Year and irrigation had the largest effect on disease incidence, with highest SWM incidence occurring under irrigation in 2013, followed by 2014 and 2015. Conversely, BGM incidence under irrigation was highest in 2015 and lowest in 2013, but levels were lower than SWM. Significantly (P <0.05) lower disease incidences were observed in dryland plots, which also produced higher yield than irrigated plots. Cultivars varied significantly in SWM incidence and yield under irrigated and dryland conditions, perhaps due to variable disease pressure, but there was no consistent trend in cultivar performance. BGM incidence was similar in cultivars, but differed among years. These findings indicate that SWM may be a limiting factor to lentil production in wetter areas, as the ten cultivars from five market classes tested were all highly susceptible to SWM.


2003 ◽  
Vol 93 (6) ◽  
pp. 752-757 ◽  
Author(s):  
J. B. Scott ◽  
F. S. Hay ◽  
C. R. Wilson ◽  
P. J. Cotterill ◽  
A. J. Fist

Downy mildew, caused by Peronospora arborescens, has become the major disease affecting oilseed poppy (Papaver somniferum) since its first record in Tasmania in 1996. Two field trials conducted in 2000 and 2001 studied the progression and spatial distribution of downy mildew epiphytotics. The logistic and exponential models best described the progression of disease incidence and severity, respectively. Incidence and severity increased rapidly following canopy closure. In 2001, incidence increased from 0.16%, prior to canopy closure, to 100% at late flowering (40 days). Spatial analyses of epiphytotics were conducted by fitting the beta-binomial and binomial distributions, median runs analysis, and the spatial analysis by distance indices. All analyses demonstrated that the distribution of incidence and severity was strongly spatially aggregated from canopy closure until at least late flowering. These results suggest that secondary spread from a few primary infections is the major factor in epiphytotics.


2008 ◽  
Vol 23 (3) ◽  
pp. 183-187 ◽  
Author(s):  
Emil Rekanovic ◽  
Ivana Potocnik ◽  
Milos Stepanovic ◽  
Svetlana Milijasevic ◽  
Biljana Todorovic

The efficacy of new fungicide mixtures in controlling Plasmopara viticola in grapevine was evaluated in field trials. The efficacies of Profiler (fluopicolide + fosetyl-Al) and the standard fungicide Mikal Flash (fosetyl-Al + folpet) were tested at Radmilovac and Slankamenacki Vinogradi in 2006 and 2007. Both tested fungicides exhibited high efficacy in controlling grape downy mildew. There were no significant differencies in the efficacies of Profiler (96.1-99.7%) and Mikal Flash (94.9-99.2%). Our experiments showed that the investigated fungicide mixture fluopicolide + fosetyl-Al is highly effective against P. viticola, even when it it is applied at long intervals and under high disease pressure.


Plant Disease ◽  
2009 ◽  
Vol 93 (8) ◽  
pp. 839-839 ◽  
Author(s):  
B. A. Pérez ◽  
E. Martínez ◽  
F. Noetinger ◽  
E. R. Wright

In Argentina, hop downy mildew disease caused by Pseudoperonospora humuli first appeared in Alto Valle of Rio Negro and Neuquen (1957), Mar del Plata (1962), and El Bolson (1963) (1). The disease occurred in the hop (Humulus lupulus L.) planting areas of El Bolson (Rio Negro) and Lago Pueblo (Chubut) in 2002 and 2003. Surveys were conducted in 30 commercial hop fields from December 2002 to March 2003 to estimate disease incidence and susceptibility of cultivars planted in these fields. Hop fields were divided into five sections and 100 plants were randomly selected and assessed for the presence of disease. Symptoms that were observed in early spring included dark brown rootstocks and primary basal spikes (stunted plants with pale and curled leaves), which are characteristic of systemic infection. Later in the season, secondary infections were characterized by dark purple-to-black lesions on leaves, flowers, cones, and lateral and terminal spikes. Plant symptoms and fungal morphological markers (dichotomously branched sporangiophores; ellipsoid and papillate sporangia) agreed with hop downy mildew disease and the fungus P. humuli. Yield loss was estimated as the reduction in yield compared with the 2001–2002 season observed from five hop growers. On December 10, 70% of the hop fields had greater than 50% disease incidence and seven fields reached 100% incidence. The reduction in cone yield varied between 20 and 34% in fields without a rootstock fungicide treatment. One field with a rootstock fungicide treatment (mefenoxam, copper oxiclorure, phosphorous acid, copper sulfate, and fosetyl-Al) and regular fungicide applications had a 30% increase in cone yield compared with 2001–2002. Systemically infected plants were recorded for hop cvs. Bullion, Cascade, CEZ, GS-19, Hallertauer Mfr., Nugget, Spalt, and Traful. Previously, Cascade was rated as a resistant cultivar to the root systemic infection (1). To our knowledge, this is the first record of a hop downy mildew outbreak in Argentina during the last 30 years. Reference: (1) L. Leskovar. El Lúpulo: Su Cultivo y Procesamiento. Hemisferio Sur. Buenos Aires, 1978.


2001 ◽  
Vol 91 (2) ◽  
pp. 134-142 ◽  
Author(s):  
B. M. Wu ◽  
A. H. C. van Bruggen ◽  
K. V. Subbarao ◽  
G. G. H. Pennings

The epidemiology of lettuce downy mildew has been investigated extensively in coastal California. However, the spatial patterns of the disease and the distance that Bremia lactucae spores can be transported have not been determined. During 1995 to 1998, we conducted several field- and valley-scale surveys to determine spatial patterns of this disease in the Salinas valley. Geostatistical analyses of the survey data at both scales showed that the influence range of downy mildew incidence at one location on incidence at other locations was between 80 and 3,000 m. A linear relationship was detected between semivariance and lag distance at the field scale, although no single statistical model could fit the semi-variograms at the valley scale. Spatial interpolation by the inverse distance weighting method with a power of 2 resulted in plausible estimates of incidence throughout the valley. Cluster analysis in geographic information systems on the interpolated disease incidence from different dates demonstrated that the Salinas valley could be divided into two areas, north and south of Salinas City, with high and low disease pressure, respectively. Seasonal and spatial trends along the valley suggested that the distinction between the downy mildew conducive and nonconducive areas might be determined by environmental factors.


Plant Disease ◽  
2007 ◽  
Vol 91 (10) ◽  
pp. 1305-1309 ◽  
Author(s):  
Khalil I. Al-Mughrabi ◽  
Rick D. Peters ◽  
H. W. (Bud) Platt ◽  
Gilles Moreau ◽  
Appanna Vikram ◽  
...  

The efficacy of metalaxyl-m (Ridomil Gold 480EC) and phosphite (Phostrol) applied at planting in-furrow against pink rot (Phytophthora erythroseptica) of potato (Solanum tuberosum) ‘Shepody’ and ‘Russet Burbank’ was evaluated in field trials conducted in 2005 and 2006 in Florenceville, New Brunswick, Canada. Inoculum made from a metalaxyl-m-sensitive isolate of P. erythroseptica from New Brunswick was applied either in-furrow as a vermiculite slurry at planting or as a zoospore drench in soils adjacent to potato plants in late August. After harvest, the number and weight of tubers showing pink rot symptoms were assessed and expressed as percentages of the total tuber number and total weight of tubers. Metalaxyl-m applied in-furrow was significantly more effective against pink rot than phosphite. The mean percentage of diseased tubers as a percentage of total tuber weight was 1.5% (2005) and 1.2% (2006) for metalaxyl-m-treated plots and 9.6% (2005) and 2.8% (2006) for phosphite-treated plots, a percentage similar to that obtained in inoculated control plots with no fungicide treatment. The mean percentage of diseased tubers expressed as a percentage of the total number of tubers was 1.7% (2005) and 1.3% (2006) for metalaxyl-m-treated plots and 10.1% (2005) and 3.1% (2006) for phosphite-treated plots. Disease incidence was significantly higher using the late-season inoculation technique (respective means in 2005 and 2006 were 9.9 and 3.8% diseased tubers, by weight, and 10.6 and 3.9%, by number) than with the in-furrow inoculation method (respective means in 2005 and 2006 were 3.3 and 0.7% by weight, and 3.7 and 1.3%, by number). The potato cv. Shepody was significantly more susceptible to pink rot (9.9 and 3.3% diseased tubers, by weight, in 2005 and 2006, respectively, and 10.6 and 3.9%, by number) than Russet Burbank (respective means in 2005 and 2006 were 3.4,% and 1.2%, by weight, and 3.7,% and 1.2%, by number). Our findings indicate that metalaxyl applied in-furrow at planting is a viable option for control of pink rot caused by metalaxyl-sensitive strains of P. erythroseptica, whereas phosphite was ineffective.


Sign in / Sign up

Export Citation Format

Share Document