scholarly journals Response of lentil cultivars to Sclerotinia white mold and Botrytis grey mould infection under irrigated and dryland conditions

Author(s):  
Kazi Kader ◽  
Scott Erickson ◽  
Robyne Bowness ◽  
Mark A Olson ◽  
Syama Chatterton

Diseases such as Sclerotinia white mold (SWM) caused by the fungus Sclerotinia sclerotiorum (Lib.) de Bary and Botrytis grey mold (BGM) caused by the fungus Botrytis cinerea Pers. may be limiting factors for lentil production in wetter areas of Alberta, Canada. Field trials were conducted at the Lethbridge Research and Development Centre from 2013-2015 to evaluate the response of lentil cultivars to SWM and BGM and yield impacts. Ten lentil cultivars from five market classes were evaluated under irrigated and dry land plots with two planting densities (120 plants m-2 and 160 plants m-2).Year and irrigation had the largest effect on disease incidence, with highest SWM incidence occurring under irrigation in 2013, followed by 2014 and 2015. Conversely, BGM incidence under irrigation was highest in 2015 and lowest in 2013, but levels were lower than SWM. Significantly (P <0.05) lower disease incidences were observed in dryland plots, which also produced higher yield than irrigated plots. Cultivars varied significantly in SWM incidence and yield under irrigated and dryland conditions, perhaps due to variable disease pressure, but there was no consistent trend in cultivar performance. BGM incidence was similar in cultivars, but differed among years. These findings indicate that SWM may be a limiting factor to lentil production in wetter areas, as the ten cultivars from five market classes tested were all highly susceptible to SWM.

Plant Disease ◽  
2002 ◽  
Vol 86 (5) ◽  
pp. 543-546 ◽  
Author(s):  
R. J. Sayler ◽  
S. M. Southwick ◽  
J. T. Yeager ◽  
K. Glozer ◽  
E. L. Little ◽  
...  

Bacterial canker is one of the most economically important diseases of stone fruit trees, including ‘French’ prune (Prunus domestica). Field trials were conducted to evaluate the effect of rootstock selection and budding height on the incidence and severity of bacterial canker in four orchards with low to high disease pressure. Treatments included French prune scions low-grafted on ‘Lovell’ peach (Prunus persica) rootstocks as well as Myrobalan 29C (Prunus cerasifera) plum rootstocks grafted at 15, 50, and 90 cm above the rootstock crown. Another treatment consisted of growing Myrobalan 29C plum rootstocks in the field for one growing season, then field-grafting French prune buds onto rootstock scaffolds. Lovell peach rootstock provided the greatest protection from bacterial canker as measured by disease incidence and tree mortality in all orchards. Field-budded rootstocks and rootstocks grafted at the highest budding height provided moderate levels of resistance to bacterial canker. These treatments reduced the incidence but not the severity of disease.


2015 ◽  
Vol 4 (3) ◽  
pp. 89 ◽  
Author(s):  
Heikki M. T. Hokkanen ◽  
Ingeborg Menzler-Hokkanen ◽  
Marja-Leena Lahdenpera

<p>Targeted precision biocontrol and improved pollination were studied Europe-wide in the EU ERA-NET CORE ORGANIC 2 project BICOPOLL (Biocontrol and Pollination). A case study was conducted on the management of strawberry grey mold <em>Botrytis cinerea</em>, with the biocontrol fungus, <em>Gliocladium catenulatum</em>, vectored by honey bees or bumble bees. A joint field trial carried out in five countries targeted strawberry cultivations in open field, and included four treatments: untreated control, chemical fungicide, entomovectored biocontrol, and chemical and biocontrol combined. In organic fields, no pesticide treatments were included. The proportion of moldy berries, and/or the marketable yield of healthy berries were recorded from each treatment, along with other parameters of local interest. A pilot study was started in Finland in 2006, and, by 2012, large commercial farms were using entomovectoring. In 2012, field trials were started in Estonia and in Italy, and in 2013-14, these experiments were expanded to Slovenia and Turkey. In total, 26 field tests were conducted using entomovectoring and <em>Gliocladium catenulatum</em> (Prestop<sup>®</sup> Mix) on strawberry, with five additional trials on raspberry. Efficacy results have been excellent throughout the field studies. The results show crop protection equalling or exceeding that provided by a full chemical fungicide program, under all weather conditions, and over a wide geographical range (from Finland to Turkey). Under heavy disease pressure, entomovectoring provided on average a 47% disease reduction, which was the same as multiple fungicide sprays. Under light disease pressure, biocontrol decreased grey mold by an average of 66%, which was greater than fungicide sprays. The concept has proven to be effective on strawberries, raspberries, pears, apples, blueberries, cherries, and grapes. A conservative estimate for Finland is that over 500 ha of strawberry cultivation currently use the technique (≈15% of the strawberry growing area). To make full use of the entomovectoring technique, organic berry and fruit growers are encouraged to (i) keep bees, or to hire the service from local beekeepers for entomovectoring; and (ii) manage vegetation within and around the target crop to support the activity of bees and other pollinators, which can help to disseminate the beneficial microbial populations within the crop. Beekeepers are encouraged to (i) market pollination and biocontrol services to fruit and berry growers, and (ii) ensure that all operations are effective in mananging bees and their microbe dissemination activity. Biocontrol product manufacturers are encouraged to further develop products and their formulations specifically for entomovectoring, because current formulations are suboptimal as they are initially optimized for other uses (e.g., mixing into the soil).</p>


Plant Disease ◽  
2019 ◽  
Vol 103 (9) ◽  
pp. 2212-2220
Author(s):  
Jhonatan P. Barro ◽  
Maurício C. Meyer ◽  
Claúdia V. Godoy ◽  
Alfredo R. Dias ◽  
Carlos M. Utiamada ◽  
...  

White mold, caused by Sclerotinia sclerotiorum, is a yield-limiting disease of soybean in Brazil. Uniform fungicide trials have been conducted annually since 2009. Data from 74 cooperative field trials conducted over a 10-year period were assembled. We selected five fungicides applied two times around flowering: dimoxystrobin plus boscalid (DIMO+BOSC), carbendazim plus procymidone (CARB+PROC), fluazinam (FLUZ), fluopyram (FLUO), and procymidone (PROC). For comparison, thiophanate-methyl (TMET) applied four times was also included as a low-cost treatment. Network models were fitted to the log of white mold incidence (percentages) and log of sclerotia mass data (grams/hectare) and to the nontransformed yield data (kilograms/hectare) for each treatment, including the untreated check. Back-transformation of the meta-analytic estimates indicated that the lowest and highest mean (95% confidence interval [CI]) percent reductions in incidence and sclerotia mass were 54.2 (49.3 to 58.7) and 51.6% (43.7 to 58.3) for TMET and 83.8 (79.1 to 87.5) and 87% (81.9 to 91.6) for CARB+PROC, respectively. The overall mean (95% CI) yield responses ranged from 323 kg/ha (247.4 to 400.3) for TMET to 626 kg/ha (521.7 to 731.7) for DIMO+BOSC, but the variance was significantly reduced by a binary variable (30% threshold) describing disease incidence in the untreated check. On average, an increment of 352 kg/ha was estimated for trials where the incidence was >30% compared with the low-disease scenario. Hence, the probability of breaking even on fungicide costs for the high-disease scenario was >65% for the more effective, but more expensive fungicide (FLUZ) than TMET. For the low-disease scenario, profitability was less likely and depended more on variations in fungicide cost and soybean price.


1988 ◽  
Vol 66 (2) ◽  
pp. 247-252 ◽  
Author(s):  
G. J. Boland ◽  
R. Hall

Relationships between the distribution and numbers of apothecia of Sclerotinia sclerotiorum (Lib.) de Bary and the distribution and incidence of white mold of white bean (Phaseolus vulgaris L.) were investigated in a field plot at Arkell, Ont., in 1981 and 1982. The spatial distributions of both apothecia and disease were aggregated and were most consistently described by the negative binomial distribution, although the Poisson, Poisson binomial and logarithmic with zeros distributions were also significant for some sampling dates. Numbers of apothecia were correlated with disease incidence within areas 1.4 (r = 0.07–0.67), 36 (r = 0.11–0.72), and 108 m2 (r = 0.21–0.95). The quantitative relationships between apothecia within a field of beans and the incidence of white mold may be useful in predicting the disease.


Plant Disease ◽  
2010 ◽  
Vol 94 (9) ◽  
pp. 1118-1124 ◽  
Author(s):  
P. Chitrampalam ◽  
T. A. Turini ◽  
M. E. Matheron ◽  
B. M. Pryor

Field experiments were conducted over 2 years in Yuma, AZ, and Holtville, CA, to establish the relationship between soil sclerotium density of Sclerotinia sclerotiorum and the incidence of lettuce drop on different lettuce (Lactuca sativa) types under different irrigation systems, and to determine the efficacy of the biocontrol agent Coniothyrium minitans (Contans) against S. sclerotiorum on crisphead lettuce at varied sclerotium densities under different irrigation systems. There was no significant interaction of irrigation (overhead sprinkler versus furrow) with either sclerotium density or with biocontrol treatment. Lettuce drop incidence was lowest in romaine lettuce compared with crisphead or leaf lettuce at all soil sclerotium densities. There was a significant positive correlation between the sclerotial density and the percent disease incidence. Disease incidence in plots infested with 2 sclerotia/m2 of bed was not significantly higher than in control plots regardless of lettuce type. However, plots infested with 40 or 100 sclerotia/m2 of bed revealed a significantly higher disease incidence over the control in all lettuce types. A single application of Contans at planting significantly reduced the incidence of lettuce drop in all lettuce types even under high disease pressure. There were no significant differences between recommended (2.2 kg/ha) and high (4.4 kg/ha) application rates of Contans or between one or two applications of the product.


2003 ◽  
Vol 28 (3) ◽  
pp. 245-250 ◽  
Author(s):  
Rogério F. Vieira ◽  
Cleide M. F. Pinto ◽  
Trazilbo J. de Paula Júnior

The effectiveness of fungicides in controlling white mold (Sclerotinia sclerotiorum) of dry beans (Phaseolus vulgaris) was evaluated when they were applied through irrigation water directly onto the plants or only to the soil. Two field trials were installed in April 1998 and April 1999 in Viçosa, MG. Trials were conducted as a (2 x 3) + 1 factorial: two fungicides x three application modes + one untreated control. The fungicides were benomyl (1.0 kg a.i. ha-1) and fluazinam (0.5 l a.i. ha-1). The three application modes were: (a) by backpack sprayer (667 l ha-1), (b) by garden watering-cans simulating sprinkler irrigation with 35,000 l ha-1 of water, and (c) by garden watering-cans applying water between the rows and near the soil surface in 35,000 l ha-1 of water. In 1998, fungicides were applied at 43 and 54 days after emergence (DAE); in 1999, at 47 and 61 DAE. Both fungicides were similarly effective on white mold control when applied by either chemigation or backpack sprayer, resulting in yields 21% higher than untreated control. Only fluazinam provided disease control when applications were made only in soil. Chemigation provided white mold control equivalent to that of backpack sprayer in terms of incidence, severity and number of diseased pods. Consequently, yield differences between these application methods were not significant.


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
L M Rachman

To support Indonesian’s food self-sufficiency program, more quantitative and accurate data are required on the character of soil data needed, which can be more easily understood, practical and suitable for crop selection as well as for the right fertilizer recommendations to support the agribusiness development, implementation and operation. The purpose of this research is to develop and assess soil quality in relation to the productivity of major food crops by using Soil Quality Score Plus (SQS Plus) to support agribusiness-based management of dry lands. The use of SQS for assessing soil quality in principle determines the weighted average score obtained from the score of each selected key parameter multiplied by its weight. The SQS for the 36 locations observed varies from 2.36 (low) to 4.12 (high). SQS Plus adds letter(s) after a score to indicate the limiting factor(s) of soil ecosystem. The most limiting factor is low carbon organic content (72.2 % from the 36 locations observed), followed by low P availability (58.3%), and low total organic N (41.7%). Data of correlation between SQS and crop productivity is not good as expected.  Crop growth and crop production are not only determined by soil quality and its limiting factors.   Keywords: Crop productivity, dry land management, soil limiting factors, soil quality assessment, Soil Quality Score


2017 ◽  
Vol 44 (1) ◽  
pp. 19-25 ◽  
Author(s):  
J.M. Sarver ◽  
R.S. Tubbs ◽  
J.P. Beasley ◽  
A.K. Culbreath ◽  
T.L. Grey ◽  
...  

ABSTRACT Achieving and maintaining an adequate plant stand is a major priority when making planting and early season management decisions in peanut (Arachis hypogaea L.). Unpredictable and often extreme weather and high disease pressure in the southeastern United States can contribute to poor emergence and below-optimum plant stands. When plant stand is affected, replanting may be agronomically justified. This study was designed to determine i) the effect of plant stand on pod yield, market grade, and disease incidence in peanut seeded in a twin row pattern, (ii) if replanting is a viable option in a field with a below adequate stand and, iii) the best method for replanting peanut when an adequate stand is not achieved. Field trials were established at two locations in south Georgia in 2012 and 2013 to evaluate peanut production at four plant stands (7.4, 9.8, 12.3, and 14.8 plants/m [total plants/m across both units, or ‘twins' of the twin row pattern) and four replant methods (no replant, destroy the original stand and replant at a full seeding rate, add a reduced rate of seed to supplement the original stand with a single row between the original rows, and supplement with two additional rows with one between and the other next to the original rows). Replanting occurred when the stand had been established, an average of 24 days after initial planting. Pod yield at a stand of 12.3 plants/m was 6.6 and 5.8% greater than at a stand of 7.4 and 9.8 plants/m, respectively, with no benefit from increasing plant stand beyond 12.3 plants/m. Market grade was also maximized at 12.3 plants/m. Disease incidence was unaffected by plant stand. Yield was increased by supplementing an initial stand of 9.8 plants/m in both a single additional row and in two additional rows by 8.3 and 6.6%, respectively. A full replant of the original stand always resulted in lower yield, while grade was slightly increased in the full replant treatment. While an initial stand of 12.3 plants/m was needed in order to maintain yield potential, replanting via supplemental seed addition can recover lost yield at stands below this level.


2018 ◽  
Vol 5 (1) ◽  
pp. 7-16
Author(s):  
Gabriela Carolina Guimarães Andrade ◽  
Renato Carrer Filho ◽  
Marcos Gomes da Cunha

White mold (Sclerotinia sclerotiorum) is one of the most important fungal diseases that affect soybean, primarily due to the production of resistant structures called sclerotia. The disease is difficult to control, and sources of genetic resistance are poorly understood. As such, the present study aimed to assess the resistance of soybean genotypes to white mold in two agroecosystems in the Brazil (Barreiras-BA, and Jataí-GO) and analyze the relationship between the disease incidence and the phenotypic characteristics of the genotypes, as well as determine the lodging index, crop cycle and yield. A total of 165 and 33 genotypes were assessed in the regions of Barreiras and Jataí, respectively. To verify the effect of the area, 37 genotypes were planted in both regions. The area effect was assessed for the study variables, and the correlation was significant between the disease and lodging, cycle and production. Considering resistance, area and yield, genotypes ANTA82, 2011L003, 2011L005 exhibited the highest yield and resistance to white mold.


Sign in / Sign up

Export Citation Format

Share Document