scholarly journals Sclerotinia Wilt of Hop (Humulus lupulus) Caused by Sclerotinia sclerotiorum in the Pacific Northwest United States

Plant Disease ◽  
2012 ◽  
Vol 96 (4) ◽  
pp. 583-583
Author(s):  
S. M. Kropf ◽  
M. L. Putnam ◽  
M. Serdani ◽  
M. C. Twomey ◽  
J. L. Woods ◽  
...  

In June 2009, wilted hop bines were observed in a yard in Marion County, OR. The wilt was associated with a stem rot that occurred ~1 m from the ground near the point where bines are tied together for horticultural purposes. Samples of affected stems were submitted to the Oregon State University Plant Clinic. White hyphae and large, black sclerotia were present on the stems, with a clear delineation between healthy and diseased tissue. The pathogen was identified as Sclerotinia sclerotiorum based on morphological characters. In June 2011, bine wilting was observed on the same farm but in a different hop yard (cv. Nugget) ~10 km from the 2009 occurrence. Affected plants had upward curled leaves with necrotic margins or wilted bines that were severed at the soil line. Wilted bines tended to have smaller diameters than bines with foliar symptoms only. Of 100 plants examined, 75% displayed some foliar symptoms and 66% had at least one bine that was wilted. Yield loss was estimated at 10 to 20% due to bine wilting before cone development. Unlike the 2009 occurrence, wilted bines did not display aerial signs of S. sclerotiorum. Rather, water-soaked lesions covered in white, cottony mycelium were apparent on affected stems 2.5 to 5 cm below the soil surface, some bearing large, irregularly shaped sclerotia. Isolations made onto potato dextrose agar yielded isolates with rapid growth rates and morphological characters consistent with S. sclerotiorum (1). DNA was extracted (2) and pathogen identity was confirmed by PCR amplification and sequencing of the internal transcribed spacer regions from isolates SS001 and SS002 as described before (4). The amplicons were sequenced bidirectionally and consensus sequences were 100% similar to S. sclerotiorum (GenBank No. AAGT01000678.1). Two nucleotide polymorphisms were present that differentiated the sequences from those of 12 S. trifoliorum accessions in GenBank that could be aligned (2). Greenhouse assays utilizing a toothpick inoculation procedure (3) were conducted to fulfill Koch's postulates. Stems of five 4-week-old hop plants of cv. Agate were pierced with a toothpick colonized with S. sclerotiorum. Five control plants were similarly inoculated with toothpicks without the fungus. Inoculated plants developed symptoms similar to those observed in the field within 11 days; four of five plants inoculated with isolate SS001 and two of five plants inoculated with isolate SS002 completely wilted. S. sclerotiorum was reisolated from all inoculated plants but not the control plants. To our knowledge, this is the first report of Sclerotinia wilt on hop in Oregon or the Pacific Northwest (1), where nearly all commercial hop production occurs in the United States. The disease appears to be localized to a limited number of yards, although given the widespread distribution and host range of S. sclerotiorum, it is plausible that the disease may occur in other yards. Recurrent outbreaks and spread of the disease among yards on the affected farm suggests that Sclerotinia wilt has the potential to become a perennial problem on hop and efforts to limit the introduction of S. sclerotiorum into other yards are warranted. References: (1) D. H. Gent. Page 32 in: Compendium of Hop Diseases and Pests. The American Phytopathological Society, St. Paul, MN, 2009. (2) E. N. Njambere et al. Plant Dis. 92:917, 2008. (3) M. L. Putnam. Plant Pathol. 53:252, 2004. (4) T. J. White et al. PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, 1990.

2016 ◽  
Vol 148 (5) ◽  
pp. 616-618 ◽  
Author(s):  
E.R. Echegaray ◽  
R.N. Stougaard ◽  
B. Bohannon

AbstractEuxestonotus error (Fitch) (Hymenoptera: Platygastridae) is considered part of the natural enemy complex of the wheat midge Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae). Although previously reported in the United States of America, there is no record for this species outside the state of New York since 1865. A survey conducted in the summer of 2015 revealed that E. error is present in northwestern Montana and is likely playing a role in the suppression of wheat midge populations.


Plant Disease ◽  
2009 ◽  
Vol 93 (8) ◽  
pp. 797-803 ◽  
Author(s):  
Renuka N. Attanayake ◽  
Dean A. Glawe ◽  
Frank M. Dugan ◽  
Weidong Chen

The taxonomy of the powdery mildew fungus infecting lentil in the Pacific Northwest (PNW) of the United States was investigated on the basis of morphology and rDNA internal transcribed spacer (ITS) sequences. Anamorphic characters were in close agreement with descriptions of Erysiphe trifolii. However, teleomorphs formed chasmothecial appendages with highly branched apices, whereas E. trifolii has been described as producing flexuous or sometimes loosely branched appendages. Branched appendages have been described in Erysiphe diffusa, a fungus reported from species of Lens, Glycine, and Sophora, raising the possibility that the PNW fungus could be E. diffusa. Examination of morphological characters of an authentic specimen of E. trifolii from Austria determined that it included chasmothecial appendages resembling those seen in PNW specimens. Furthermore, ITS sequences from five powdery mildew samples collected from lentils in PNW greenhouses and fields from 2006 to 2008 were identical to one another, and exhibited higher similarity to sequences of E. trifolii (99%) than to those of any other Erysiphe spp. available in GenBank. Parsimony analysis grouped the lentil powdery mildew into a clade with Erysiphe baeumleri, E. trifolii, and E. trifolii–like Oidium sp., but indicated a more distant relationship to E. diffusa. In greenhouse inoculation studies, the lentil powdery mildew fungus did not infect soybean genotypes known to be susceptible to E. diffusa. The pathogenicity of E. trifolii on lentil was confirmed using modified Koch's postulates. This is the first report of E. trifolii infecting lentil. E. diffusa and E. trifolii have different host ranges, so the discovery of E. trifolii on lentil has implications both for determining species of powdery mildews on cool-season grain legumes, and in disease management.


Plant Disease ◽  
2002 ◽  
Vol 86 (1) ◽  
pp. 71-71
Author(s):  
A. Garibaldi ◽  
A. Minuto ◽  
M. L. Gullino

The production of potted ornamental plants is very important in the Albenga Region of northern Italy, where plants are grown for export to central and northern Europe. During fall 2000 and spring 2001, sudden wilt of tussock bellflower (Campanula carpatica Jacq.) and butterfly flower (Schizanthus × wisetonensis Hort.) was observed on potted plants in a commercial greenhouse. Initial symptoms included stem necrosis at the soil line and yellowing and tan discoloration of the lower leaves. As stem necrosis progressed, infected plants growing in a peat, bark compost, and clay mixture (70-20-10) wilted and died. Necrotic tissues were covered with whitish mycelia that produced dark, spherical (2 to 6 mm diameter) sclerotia. Sclerotinia sclerotiorum was consistently recovered from symptomatic stem pieces of both plants disinfested for 1 min in 1% NaOCl and plated on potato dextrose agar amended with streptomycin sulphate at 100 ppm. Pathogenicity of three isolates obtained from each crop was confirmed by inoculating 45- to 60-day-old C. carpatica and Schizanthus × wisetonensis plants grown in containers (14 cm diameter). Inoculum that consisted of wheat kernels infested with mycelia and sclerotia of each isolate was placed on the soil surface around the base of previously artificially wounded or nonwounded plants. Noninoculated plants served as controls. All plants were maintained outdoors where temperatures ranged between 8 and 15°C. Inoculated plants developed symptoms of leaf yellowing, followed by wilt, within 7 to 10 days, while control plants remained symptomless. White mycelia and sclerotia developed on infected tissues and S. sclerotiorum was reisolated from inoculated plants. To our knowledge, this is the first report of stem blight of C. carpatica and Schizanthus × wisetonensis caused by S. sclerotiorum in Italy. The disease was previously observed on C. carpatica in Great Britain (2) and on Schizanthus sp. in the United States (1). References: (1) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society, St. Paul, MN, 1989. (2) J. Rees. Welsh J. Agric. 1:188, 1925.


2021 ◽  
pp. 119-143
Author(s):  
Melanie C. Ross

Chapter 5 explores the Vineyard movement, one of the fastest-growing church movements in the United States, which is committed to holding together the “already” and “not yet” of the Kingdom of God in worship. In addition to looking for a dramatic, miraculous inbreaking of the Holy Spirit, there is a less dramatic but equally formative influence at work in worship: the Quaker notion of “gospel order” and its accompanying understanding of ethics. These commitments are tested at “Koinonia Vineyard,” a congregation located in the Pacific Northwest, where one African American member wrestles with her vision of activism and her Caucasian pastor’s desire for the congregation to remain politically neutral during a time of national racial unrest.


Weed Science ◽  
1986 ◽  
Vol 34 (S1) ◽  
pp. 2-6 ◽  
Author(s):  
Gary A. Lee

Rush skeletonweed (Chondrilla junceaL. CHOJU) infestations occur along the eastern seaboard and in several western states of the United States. This Eurasian species was inadvertently introduced prior to 1870, with established stands first reported in Maryland and West Virginia (16). These infestations (16) were assessed as lacking aggressive characteristics and posed little threat as a problem weed. Although rush skeletonweed was discovered in the Pacific Northwest as early as 1938, the species was not recognized as a potential weed problem until nearly three decades later (27). Subsequent surveys revealed that infestations occupied over 2.3 million ha in California, Idaho, Oregon, and Washington (6). Attempts to generate support for an organized control program in Idaho were met with little enthusiasm during the 1960's.


mBio ◽  
2017 ◽  
Vol 8 (6) ◽  
Author(s):  
Jaime Martinez-Urtaza ◽  
Ronny van Aerle ◽  
Michel Abanto ◽  
Julie Haendiges ◽  
Robert A. Myers ◽  
...  

ABSTRACT Vibrio parahaemolyticus is the leading cause of seafood-related infections with illnesses undergoing a geographic expansion. In this process of expansion, the most fundamental change has been the transition from infections caused by local strains to the surge of pandemic clonal types. Pandemic clone sequence type 3 (ST3) was the only example of transcontinental spreading until 2012, when ST36 was detected outside the region where it is endemic in the U.S. Pacific Northwest causing infections along the U.S. northeast coast and Spain. Here, we used genome-wide analyses to reconstruct the evolutionary history of the V. parahaemolyticus ST36 clone over the course of its geographic expansion during the previous 25 years. The origin of this lineage was estimated to be in ~1985. By 1995, a new variant emerged in the region and quickly replaced the old clone, which has not been detected since 2000. The new Pacific Northwest (PNW) lineage was responsible for the first cases associated with this clone outside the Pacific Northwest region. After several introductions into the northeast coast, the new PNW clone differentiated into a highly dynamic group that continues to cause illness on the northeast coast of the United States. Surprisingly, the strains detected in Europe in 2012 diverged from this ancestral group around 2000 and have conserved genetic features present only in the old PNW lineage. Recombination was identified as the major driver of diversification, with some preliminary observations suggesting a trend toward a more specialized lifestyle, which may represent a critical element in the expansion of epidemics under scenarios of coastal warming. IMPORTANCE Vibrio parahaemolyticus and Vibrio cholerae represent the only two instances of pandemic expansions of human pathogens originating in the marine environment. However, while the current pandemic of V. cholerae emerged more than 50 years ago, the global expansion of V. parahaemolyticus is a recent phenomenon. These modern expansions provide an exceptional opportunity to study the evolutionary process of these pathogens at first hand and gain an understanding of the mechanisms shaping the epidemic dynamics of these diseases, in particular, the emergence, dispersal, and successful introduction in new regions facilitating global spreading of infections. In this study, we used genomic analysis to examine the evolutionary divergence that has occurred over the course of the most recent transcontinental expansion of a pathogenic Vibrio, the spreading of the V. parahaemolyticus sequence type 36 clone from the region where it is endemic on the Pacific coast of North America to the east coast of the United States and finally to the west coast of Europe. IMPORTANCE Vibrio parahaemolyticus and Vibrio cholerae represent the only two instances of pandemic expansions of human pathogens originating in the marine environment. However, while the current pandemic of V. cholerae emerged more than 50 years ago, the global expansion of V. parahaemolyticus is a recent phenomenon. These modern expansions provide an exceptional opportunity to study the evolutionary process of these pathogens at first hand and gain an understanding of the mechanisms shaping the epidemic dynamics of these diseases, in particular, the emergence, dispersal, and successful introduction in new regions facilitating global spreading of infections. In this study, we used genomic analysis to examine the evolutionary divergence that has occurred over the course of the most recent transcontinental expansion of a pathogenic Vibrio, the spreading of the V. parahaemolyticus sequence type 36 clone from the region where it is endemic on the Pacific coast of North America to the east coast of the United States and finally to the west coast of Europe.


Plant Disease ◽  
2005 ◽  
Vol 89 (1) ◽  
pp. 4-11 ◽  
Author(s):  
Lindsey J. du Toit ◽  
Mike L. Derie ◽  
Pablo Hernandez-Perez

There are no previous reports of Verticillium wilt in fresh and processing spinach (Spinacia oleracea) crops in the United States. In 2002, a hybrid spinach seed crop in the Pacific Northwest developed late-season wilt symptoms. Assays of the harvested seed and stock seed of the male and female parents revealed 59.5, 44.0, and 1.5%, respectively, were infected with Verticillium dahliae. Assays of 13 stock or commercial seed lots grown in 2002 and 62 commercial lots harvested in 2003 in Denmark, Holland, New Zealand, and the United States revealed the prevalence of Verticillium spp. in commercial spinach seed. Sixty-eight lots (89%) were infected with Verticillium spp. at incidences ranging from 0.3 to 84.8%. Five spinach seed isolates of V. dahliae were pathogenic on each of three spinach cultivars by root-dip inoculation. V. dahliae was detected on 26.4% of the seed from 7 of 11 inoculated plants but on none of the seed from 6 control plants, demonstrating systemic movement of V. dahliae. Seed-to-seed transmission was also demonstrated by planting naturally infected seed lots. This is the first report of Verticillium wilt of spinach in the primary region of spinach seed production in the United States.


2018 ◽  
Vol 58 (2) ◽  
pp. 261-294
Author(s):  
Krystyn R. Moon

This essay explores the experiences and debates surrounding preparatory schools for Chinese students in the United States at the turn of the twentieth century. These institutions attempted to expand educational opportunities for poorer Chinese students who might otherwise not have had a chance to go to school; however, most of these children also had families in the United States, who supported their children's education but also needed their help to sustain their families. American laws banned most forms of Chinese immigration, and families had to carefully maneuver through federal policies to enter the country as students, often turning to European Americans-who were invested in expanding U.S. involvement in China-for support. Because of anti-Chinese sentiments, consular and immigration authorities questioned these programs, making them difficult to sustain. Ultimately, the interactions between immigration and consular officials, education boosters, and Chinese students were integral to the development of preparatory schools for other international students in the twentieth century.


2020 ◽  
Vol 50 (5) ◽  
pp. 447-456
Author(s):  
Changyou Sun ◽  
Jean M. Daniels ◽  
Kate C. Marcille

Softwood logs comprise a large portion of forest product exports from the United States. Most of these exports have occurred between the Pacific Northwest region of the United States and several Asian countries. In this study, the extent and degree of market integration of softwood log exports from 1996 to 2018 are examined by co-integration analyses and permanent–transitory decomposition. Softwood log exports to Japan and South Korea appear to be in the same economic market and show a high degree of integration, while trade between the United States and China has evolved more independently. A detailed analysis is conducted on five prices related to Japan and South Korea with full-time coverage, and one common integrating factor is found and estimated. The price of export from the Columbia-Snake Customs District to Japan is identified as the driving force. Price responses to market shocks usually occur within four months. These findings have implications for government agencies and participants in the market of softwood log trade.


Sign in / Sign up

Export Citation Format

Share Document