scholarly journals First Report on the Natural Occurrence of Beet chlorosis virus in Poland

Plant Disease ◽  
2007 ◽  
Vol 91 (3) ◽  
pp. 326-326 ◽  
Author(s):  
A. Kozlowska-Makulska ◽  
M. S. Szyndel ◽  
J. Syller ◽  
S. Bouzoubaa ◽  
M. Beuve ◽  
...  

Yellowing symptoms on sugar beet (Beta vulgaris L.) are caused by several viruses, especially those belonging to the genus Polerovirus of the family Luteoviridae, including Beet mild yellowing virus (BMYV) and Beet western yellows virus (BWYV), and recently, a new species, Beet chlorosis virus (BChV), was reported (2). To identify Polerovirus species occurring in beet crops in Poland and determine their molecular variability, field surveys were performed in the summer and autumn of 2005. Leaves from symptomatic beet plants were collected at 26 localities in the main commercial sugar-beet-growing areas in Poland that included the Bydgoszcz, Kutno, Lublin, Poznań, Olsztyn, and Warszawa regions. Enzyme-linked immunosorbent assay (ELISA) tests (Loewe Biochemica GmbH, Sauerlach, Germany) detected poleroviruses in 23 of 160 samples (approximately 20 samples from each field). Multiplex reverse-transcription polymerase chain reaction (RT-PCR) (1) (GE Healthcare S.A.-Amersham Velizy, France) confirmed the presence of poleroviruses in 13 of 23 samples. Nine of twenty sugar beet plants gave positive reactions with BChV-specific primers and three with primers specific to the BMYV P0 protein. Two isolates reacted only with primer sets CP+/CP, sequences that are highly conserved for all beet poleroviruses. Leaf samples collected from three plants infected with BChV were used as inoculum sources for Myzus persicae in transmission tests to suitable indicator plants including sugar beet, red beet (Beta vulgaris L. var. conditiva Alef.), and Chenopodium capitatum. All C. capitatum and beet plants were successfully infected with BChV after a 48-h acquisition access period and an inoculation access period of 3 days. Transmission was confirmed by the presence of characteristic symptoms and by ELISA. Amino acid sequences obtained from each of four purified (QIAquick PCR Purification kit, Qiagen S.A., Courtaboeuf, France) RT-PCR products (550 and 750 bp for CP and P0, respectively) were 100% identical with the CP region (GenBank Accession No. AAF89621) and 98% identical with the P0 region (GenBank Accession No. NP114360) of the French isolate of BChV. To our knowledge, this is the first report of BChV in Poland. References: (1) S. Hauser et al. J. Virol. Methods 89:11, 2000. (2) M. Stevens et al. Mol. Plant Pathol. 6:1, 2005.

Plant Disease ◽  
2003 ◽  
Vol 87 (1) ◽  
pp. 102-102 ◽  
Author(s):  
S. Adkins ◽  
L. Breman ◽  
C. A. Baker ◽  
S. Wilson

Blackberry lily (Belamcanda chinensis (L.) DC.) is an herbaceous perennial in the Iridaceae characterized by purple-spotted orange flowers followed by persistent clusters of black fruit. In July 2002, virus-like symptoms including chlorotic ringspots and ring patterns were observed on blackberry lily leaves on 2 of 10 plants in a south Florida ornamental demonstration garden. Inclusion body morphology suggested the presence of a Tospovirus. Tomato spotted wilt virus (TSWV) was specifically identified by serological testing using enzyme-linked immunosorbent assay (Agdia, Elkhart, IN). Sequence analysis of a nucleocapsid (N) protein gene fragment amplified by reverse transcription-polymerase chain reaction (RT-PCR) with primers TSWV723 and TSWV722 (1) from total RNA confirmed the diagnosis. Nucleotide and deduced amino acid sequences of a 579 base pair region of the RT-PCR product were 95 to 99% and 95 to 100% identical, respectively, to TSWV N-gene sequences in GenBank. Since these 2-year-old plants were grown on-site from seed, they were likely inoculated by thrips from a nearby source. Together with a previous observation of TSWV in north Florida nursery stock (L. Breman, unpublished), this represents, to our knowledge, the first report of TSWV infection of blackberry lily in North America although TSWV was observed in plants of this species in Japan 25 years ago (2). References: (1) S. Adkins, and E. N. Rosskopf. Plant Dis. 86:1310, 2002. (2) T. Yamamoto and K.-I. Ohata. Bull. Shikoku Agric. Exp. Stn. 30:39, 1977.


Plant Disease ◽  
2006 ◽  
Vol 90 (1) ◽  
pp. 110-110 ◽  
Author(s):  
C. Rubies Autonell ◽  
C. Ratti ◽  
R. Resca ◽  
M. De Biaggi ◽  
J. Ayala García

Beet virus Q (BVQ) is a member of the genus Pomovirus that is transmitted by Polymyxa betae Keskin. Initially described as the Wierthe serotype of Beet soilborne virus (BSBV), BVQ is now considered a distinct virus species based on its genomic properties (1). BVQ is commonly found in fields where BSBV and the causal agent of rhizomania disease, Beet necrotic yellow vein virus (BNYVV), are also present. Simultaneous infection of sugar beet plants with multiple virus species could affect disease symptom expression (4). For this reason, the pathogenicity of BVQ and its role in the epidemiology of rhizomania disease remain a subject of study. During 2004, six soil samples were collected from different sites in the Castilla-La Mancha Region in Spain (Albacete and Ciudad Real provinces) where rhizomania symptoms were observed in BNYVV-tolerant sugar beet cultivars. Soil from the Hainaut Region of Belgium, infected with BNYVV, BSBV, and BVQ and supplied by Prof. C. Bragard (Unité de Phytopathologie, Université Catholique de Louvain, Belgium) was used as a positive control. Sugar beet plants (cv. Asso) were grown in the soil samples for 45 days at 24°C and then root tissue was harvested. All samples were analyzed using enzyme-linked immunosorbent assay (ELISA) with commercial BNYVV antiserum (BIOREBA AG, Reinach, Switzerland) and BSBV/BVQ antisera (IC10 and 6G2) supplied by R. Koenig (Federal Biological Research Centre for Agriculture and Forestry, Braunschweig, Germany). Total RNA extracted from sugar beet roots as previously described (3) was tested using reverse transcription-polymerase chain reaction (RT-PCR). Primers BVQ3F (5′-GTT TTC AAA CTT GCC ATC CT-3′) and BVQ3R2 (5′-CCA CAA TGG GCC AAT AGA-3′), which amplify a 690-bp fragment of the triple gene block region of BVQ RNA 3, were designed based on the published sequence (GenBank Accession No. AJ223598). The presence of BSBV and BNYVV was assayed using RT-PCR with previously described primers (2,3). BVQ was detected from plants grown in soil collected from La Roda (Albacete) in Spain and from Hainaut in Belgium. The fragments amplified from Spanish sample with BVQ3F and BVQ3R2 (GenBank Accession No. AY849375) showed 95.9% nucleotide sequence identity with the previously published sequence of BVQ (1). The La Roda BVQ isolate was mechanically transmitted to Chenopodium quinoa from infected sugar beet root tissue. BVQ was detected using RT-PCR in local lesions that appeared approximately 5 days after inoculation and subsequently spread along veins. To our knowledge, this is the first report of BVQ in soil from Spain, although it has been previously reported in Belgium, Bulgaria, France, Germany, Hungary, and the Netherlands (2). BSBV and BNYVV (type A) were detected in all six Spanish samples, as well as in the Belgian soil. References: (1) R. Koenig et al. J. Gen. Virol. 79:2027, 1998. (2) A. Meunier et al. Appl. Environ Microbiol. 69:2356, 2003. (3) C. Ratti et al. J. Virol. Methods 124:41, 2005. (4) C. Rush Annu. Rev Phytopathol 41:567, 2003.


Plant Disease ◽  
2015 ◽  
Vol 99 (3) ◽  
pp. 423-423 ◽  
Author(s):  
J. A. M. Rezende ◽  
V. M. Camelo ◽  
D. Flôres ◽  
A. P. O. A. Mello ◽  
E. W. Kitajima ◽  
...  

Beet necrotic yellow vein virus (BNYVV) is an economically important pathogen of sugar beet (Beta vulgaris var. saccharifera) in several European, and Asian countries and in the United States (3). The virus is transmitted by the soil-inhabiting plasmodiophorid Polymyxa betae and causes the rhizomania disease of sugar beet. In November 2012, plants of B. vulgaris subsp. vulgaris cv. Boro (red table beet) exhibiting mainly severe characteristic root symptom of rhizomania were found in a commercial field located in the municipality of São José do Rio Pardo, State of São Paulo, Brazil. No characteristic virus-inducing foliar symptom was observed on diseased plants. The incidence of diseased plants was around 70% in the two visited crops. As the hairy root symptom is indicative of infection by BNYVV, the present study aimed to detect and identify this virus associated with the diseased plants. Preliminary leaf dip analysis by transmission electron microscopy revealed the presence of very few benyvirus-like particles. Total RNA was extracted from roots of three symptomatic plants and one asymptomatic plant according to Toth et al. (3). One-step reverse-transcription–polymerase chain reaction (RT-PCR) was performed as described by Morris et al. (2) with primers that amplify part of the coat protein gene at RNA2. The initial assumption that the hairy root symptom was associated with BNYVV infection was confirmed by the amplification of a fragment of ~500 bp from all three symptomatic samples. No amplicon was obtained from the asymptomatic control plant. Amplicons were directly sequenced, and the consensus nucleotide and deduced amino acid sequences showed 100% identity. The nucleotide sequence for one amplicon (Accession No. KM433683) was compared with other sequences deposited in GenBank. The nucleotide (468 nt) and deduced amino acid (156 aa) sequences shared 93 to 100 and 97 to 99% identity, respectively with the corresponding nucleotide and amino acid sequences for other isolates of type A of BNYVV. The virus was transmitted to three of 10 red table beet plants inoculated with contaminated soil, and infection was confirmed by nested RT-PCR, as described by Morris et al. (1), and nucleotide sequencing. This is the first report on the occurrence of BNYVV in Brazil, which certainly will affect the yield of red table beet in the producing region. Therefore, mapping of the occurrence of BNYVV in red table beet-producing areas in Brazil for containment of the spread of the virus is urgent. In the meantime, precautions should be taken to control the movement of contaminated soil and beet roots, carrots, or any vegetable grown on infested land that might introduce the virus to still virus-free regions. References: (1) J. Morris et al. J. Virol. Methods 95:163, 2001. (2) D. D. Sutic et al. Handbook of Plant Virus Diseases. CRC Press, Boca Raton, Florida, 1999. (3) I. K. Toth et al. Methods for the Detection and Quantification of Erwinia carotovora subsp. atroseptica (Pectobacterium carotovorum subsb. atrosepticum) on Potatoes: A Laboratory Manual. Scottish Crop Research Institute, Dundee, Scotland, 2002.


Plant Disease ◽  
2003 ◽  
Vol 87 (9) ◽  
pp. 1148-1148 ◽  
Author(s):  
I. Mavrič ◽  
M. Viršček Marn ◽  
D. Koron ◽  
I. Žežlina

In 2002, severe vein yellowing and partial or complete yellowing of leaves was observed on some shoots of red raspberry (Rubus idaeus) cvs. Golden Bliss and Autumn Bliss. Sap of infected plants of cv. Golden Bliss was inoculated onto Chenopodium quinoa and Nicotiana benthamiana. Faint chlorotic spots were observed on inoculated leaves of C. quinoa approximately 14 days after inoculation but no systemic symptoms appeared. No symptoms were observed on N. benthamiana. Raspberry bushy dwarf virus (RBDV) was detected in the original raspberry plant using double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) with polyclonal antiserum (Loewe Biochemica, Sauerlach, Germany). Systemic infections of inoculated C. quinoa and N. benthaminana were confirmed using DAS-ELISA. In 2001 and 2002, unusual virus symptoms were observed on grapevine grafts (Vitis vinifera) of cv. Laški Rizling. Symptoms appeared as curved line patterns and yellowing of the leaves. No nepoviruses were found in symptomatic plants, but RBDV was confirmed using DAS-ELISA. RBDV infection was later confirmed in grapevine cv. Štajerska Belina with similar symptoms. RBDV was transmitted mechanically from grapevine to C. quinoa where it was detected by immunocapture-reverse transcription-polymerase chain reaction (IC-RT-PCR). IC-RT-PCR was used to amplify a part of the coat protein gene of the virus from raspberry and grapevine, and the amplification products were sequenced (1). The obtained sequence shared at least 93% nucleotide sequence identity with other known RBDV sequences, which confirmed the serological results. To our knowledge, this is the first report of the natural occurrence of RBDV in grapevine and also of RBDV infection of red raspberry in Slovenia. Reference: (1) H. I. Kokko et al. Biotechniques 20:842, 1996.


Plant Disease ◽  
2006 ◽  
Vol 90 (10) ◽  
pp. 1363-1363 ◽  
Author(s):  
N. Borodynko

The objective of this work was to determine whether Beet virus Q (BVQ), a member of the genus Pomovirus, is present in Poland. BVQ, like Beet necrotic yellow vein virus (BNYVV), is transmitted by Polymyxa betae Keskin. Earlier, BVQ was described as the Wierthe serotype of Beet soilborne virus (BSBV). Now, on the basis of its genomic properties (2), BVQ is recognized as a distinct virus species. BVQ is often found in fields where BSBV and BNYVV are present (4). During the fall of 2005, five plants of a cultivar susceptible to rhizomania (cv. Alyssa) and five resistant to rhizomania (cv. Henrietta) were collected from a field in the Wielkopolska Region of Poland, where BSBV and BNYVV had been previously identified, and tested for BVQ (1). All samples were analyzed by a double antibody sandwich-enzyme linked immunosorbent assay (DAS-ELISA) with antiserum against BNYVV (Bio-Rad, Hercules, CA). Rhizomania was identified only in sugar beet samples of the susceptible variety. The same samples were then tested using a triple antibody sandwich (TAS)-ELISA with commercial antisera against BSBV/BVQ (As-0576.2) and BSBV (As-0576.1) (DSMZ, Braunschweig, Germany). Nine sugar beet plants gave positive reactions with antiserum against BSBV/BVQ and negative reactions with antiserum specific to BSBV. Total RNA extracted from roots of 10 beet samples was then tested using a multiplex reverse transcription-polymerase chain reaction (mRT-PCR) and specific primers designed to amplify a fragment of the RNA2 for BNYVV and BVQ (3). The primers specifically amplified fragments of 545 bp and 291 bp of the BNYVV and BVQ, respectively. BNYVV was detected in all five samples from susceptible sugar beet plants. The presence of BVQ was confirmed in nine of the sugar beer plants, and the RT-PCR products were sequenced. Sequence analysis of the 206-nt amplicon sequence of the Polish isolate of BVQ (GenBank Accession No. DQ309444) indicated 97% nucleotide and 94% amino acid sequence identity with the previously published sequence of BVQ (GenBank Accession No. AJ223596) (2). To my knowledge, this is the first report of the natural occurrence of BVQ on sugar beet in Poland. In Europe, it has been previously reported in Belgium, Bulgaria, France, Germany, Hungary, Italy, the Netherlands, Spain, and Sweden (3,4). References: (1) N. Borodynko et al. Plant Dis. 90:112, 2006. (2) R. Koenig et al. J. Gen. Virol. 79:2027, 1998. (3) A. Meunier et al. Appl. Environ. Microbiol. 69:2356, 2003. (4) C. Rubies Autonell et al. Plant Dis. 90:110, 2006.


Plant Disease ◽  
2005 ◽  
Vol 89 (12) ◽  
pp. 1359-1359 ◽  
Author(s):  
Sh. Farzadfar ◽  
R. Pourrahim ◽  
A. R. Golnaraghi ◽  
A. Ahoonmanesh

During the 2001 growing season, a survey was conducted to determine the incidence of Beet necrotic yellow vein virus (BNYVV), Beet soilborne virus (BSBV), and Beet virus Q (BVQ) in Iran. A total of 2,816 random and 76 samples with rhizomania were collected from 131 fields in the main sugar beet cultivation areas of 13 provinces in Iran. All samples were tested using a tissue-blot immunoassay (TBIA) with commercial BNYVV (As-0799.1/CG6-F4), BSBV (As-0576.1), and BSBV/BVQ (As-0576.2) antisera provided by S. Winter (DSMZ, Braunschweig, Germany). For randomly collected samples, the highest incidence of virus infection was found for BNYVV (52.3%), followed by BSBV (9.5%) and BVQ (1.5%). Co-infection of BNYVV with BSBV or BVQ was 6.6% and 0.9%, respectively. Infection with both BSBV and BVQ was found in 16 (0.6%) samples. In addition, 0.4% (12) of the samples was infected with all three viruses. Our results indicated the presence of BVQ in samples from 10 fields located in Azarbayejan-e-gharbi, Esfahan, Fars, Kermanshah, Khorasan, Lorestan, and Semnan provinces of Iran, with or without rhizomania-like symptoms. The presence of viruses was confirmed using reverse transcription-polymerase chain reaction (RT-PCR) of RNA from 81, 19, and 14 root samples with positive reaction in TBIA to BNYVV, BSBV, and BVQ, respectively, with previously described primers (3,4). The primers specifically amplified fragments of 501 bp, 602 bp, 399 bp, and 291 bp of the BNYVV RNAs 1 and 4, BSBV RNA-2, and BVQ RNA-1, respectively. Our results indicated that the samples tested were also positive using RT-PCR. The putative vector for BNYVV, BSBV, and BVQ, Polymyxa betae, was also detected in 161 samples (from 127 fields) by amplification of a 170-bp fragment of the P. betae repetitive EcoRI-like fragments using previously described primers (4). RT-PCR products from 72 BNYVV-positive sugar beet root samples from 58 fields that also gave positive reactions in TBIA were analyzed using single-strand conformation polymorphism (SSCP) as previously described with extracts from root beards of the susceptible sugar beet cvs. OPUS and IC1 grown in the soils infested with BNYVV types A and B (provided by A. Meunier, Unite de Phytopathologie-UCL-AGRO-BAPA, Louvain-la-Neuve, Belgium) as positive controls (3). The patterns obtained with SSCP were uniform and showed widespread occurrence of BNYVV type A in almost all provinces surveyed. The fragments obtained for BNYVV RNAs 1 and 4 of an isolate from Qazvin (BNQ1) were sequenced (GenBank Accession Nos. AY703452 and AY703455) and compared with other sequences available in GenBank using Clustal W, which revealed 99.3 and 99.6% identity with the Japanese S (D84410) and Italian type A (AF197552) isolates, respectively. The economic importance of BVQ and its interactions with other sugar beet soilborne viruses remains a matter of debate. BNYVV and BSBV have been previously reported from Iran (1,2). To our knowledge, this is the first report of the natural occurrence of BVQ in sugar beets in Iran. References: (1) Sh. Farzadfar et al. Plant Dis. 86:187, 2002. (2) K. Izadpanah et al. Iran. J. Plant Pathol. 32:155, 1996. (3) R. Koenig et al. J. Gen. Virol. 76:2051, 1995. (4) A. Meunier et al. Appl. Environ. Microbiol. 69:2356, 2003.


Plant Disease ◽  
2003 ◽  
Vol 87 (2) ◽  
pp. 201-201 ◽  
Author(s):  
William M. Wintermantel ◽  
Teresa Crook ◽  
Ralph Fogg

Rhizomania, caused by Beet necrotic yellow vein virus (BNYVV) and vectored by the soilborne fungus Polymyxa betae Keskin, is one of the most economically damaging diseases affecting sugar beet (Beta vulgaris L.). The virus likely originated in Europe and was first identified in California in 1983 (1). It has since spread among American sugar beet production regions in spite of vigorous sanitation efforts, quarantine, and disease monitoring (3). In the fall of 2002, mature sugar beet plants exhibiting typical rhizomania root symptoms, including proliferation of hairy roots, vascular discoloration, and some root constriction (2) were found in several fields scattered throughout central and eastern Michigan. Symptomatic beets were from numerous cultivars, all susceptible to rhizomania. Two to five sugar beet root samples were collected from each field and sent to the USDA-ARS in Salinas, CA for analysis. Hairy root tissue from symptomatic plants was used for mechanical inoculation of indicator plants. Mechanical inoculation produced necrotic lesions on Chenopodium quinoa and systemic infection of Beta vulgaris ssp. macrocarpa, both typical of BNYVV and identical to control inoculations with BNYVV. Symptomatic sugar beet roots were washed and tested using double antibody sandwich-enzyme linked immunosorbent assay (DAS-ELISA) for the presence of BNYVV using standard procedures and antiserum specific for BNYVV (3). Sugar beet roots were tested individually, and samples were considered positive when absorbance values were at least three times those of greenhouse-grown healthy sugar beet controls. Samples were tested from 16 fields, with 10 confirmed positive for BNYVV. Positive samples had mean absorbance values ranging from 0.341 to 1.631 (A405nm) after 30 min. The mean healthy control value was 0.097. Fields were considered positive if one beet tested positive for BNYVV, but in most cases, all beets tested from a field were uniformly positive or uniformly negative. In addition, soil-baiting experiments were conducted on seven of the fields. Sugar beet seedlings were grown in soil mixed with equal parts of sand for 6 weeks and were subsequently tested using DAS-ELISA for BNYVV. Results matched those of the root sampling. Fields testing positive for BNYVV were widely dispersed within a 100 square mile (160 km2) area including portions of Gratiot, Saginaw, Tuscola, and Sanilac counties in the central and eastern portions of the Lower Peninsula of Michigan. The confirmation of rhizomania in sugar beet from the Great Lakes Region marks the last major American sugar beet production region to be diagnosed with rhizomania disease, nearly 20 years after its discovery in California (1). In 2002, there were approximately 185,000 acres (approximately 75,00 ha) of sugar beet grown in the Great Lakes Region, (Michigan, Ohio, and southern Ontario, Canada). The wide geographic distribution of infested fields within the Michigan growing area suggests the entire region should monitor for symptoms, increase rotation to nonhost crops, and consider planting rhizomania resistant sugar beet cultivars to infested fields. References:(1) J. E. Duffus et al. Plant Dis. 68:251, 1984. (2) J. E. Duffus. Rhizomania. Pages 29–30 in: Compendium of Beet Diseases and Insects, E. D. Whitney and J. E. Duffus eds. The American Phytopathological Society, St. Paul, MN, 1986. (3) G. C. Wisler et al. Plant Dis. 83:864, 1999.


Plant Disease ◽  
2010 ◽  
Vol 94 (2) ◽  
pp. 276-276 ◽  
Author(s):  
W. Menzel ◽  
S. Winter ◽  
K. R. Richert-Pöggeler

Hollyhocks are popular garden plants and selected cultivars of Alcea rosea (family Malvaceae) are widespread in Germany. In spring 2009, dozens of A. rosea plants displaying strong vein clearing and veinal yellowing symptoms were found in private gardens in Hannover, Lower Saxony. Electron microscopic examinations of negatively stained adsorption preparations of five randomly selected samples of symptomatic plants or their offshoots revealed flexuous filamentous particles resembling those of potyviruses. Sap extracts also reacted strongly positive in an antigen coated plate (ACP)-ELISA with the broad-spectrum potyvirus antiserum AS-0573/I (DSMZ, Braunschweig, Germany). RNA extracts (RNeasy Kit, Qiagen, Valencia, CA) of the above mentioned leaf samples were used as templates in reverse transcription (RT)-PCR assays with potyvirus specific primers (2) that have been shown to amplify the 3′ terminus of the genome of many potyvirus species. For extracts from symptomatic samples, this resulted in a consistent amplification of an ~1.6-kbp fragment, whereas no products were obtained from RNA extracts of asymptomatic plants. From one positive sample, the amplified fragment was cloned and one clone was partially sequenced. The nucleotide (nt) and amino acid sequences showed the highest identities (81 to 83% and 87 to 90%, respectively) to GenBank sequences FJ539084, FM212972, EU884405, and FJ561293 of the potyvirus Malva vein clearing virus (MVCM). On the basis of these identity values and according to the species demarcation criteria in the genus Potyvirus, the virus can be regarded as a German isolate of the recently sequenced MVCV (3,4). Direct sequencing of the 5′-end of the amplified RT-PCR fragment revealed sequences of only one potyvirus species. The virus isolate has been submitted to the DSMZ Plant Virus Collection (Braunschweig, Germany) under accession PV-0963 and the sequence obtained from the cloned cDNA is deposited in GenBank (GQ856544). In addition, sap from affected leaves was mechanically inoculated onto sets of herbaceous indicator plants (Chenopodium quinoa, C. foliosum, C. murale, C. amaranticolor, Datura stramonium, Nicotiana benthamiana, N. hesperis, Petunia hybrida, and Solanum lycopersicum) of which only C. quinoa plants became infected. Symptoms of weak chlorosis along and beside veins of inoculated leaves, but not systemic leaves, became visible 2 weeks postinoculation. Symptomatic leaves contained flexuous filamentous particles and ACP-ELISA and RT-PCR confirmed virus presence. The partially sequenced amplicon showed 99% nt identity to the sequence from the cloned cDNA. To our knowledge, this is the first report of a MVCV isolate naturally occurring in A. rosea and C. quinoa is the first host identified that does not belong to the plant family Malvaceae. In contrast, the MVCV isolate used in the host range study of Lunello et al. (4) did not infect A. rosea and C. quinoa, confirming previous host range descriptions by Brunt et al. (1). Since MVCV infections of hollyhocks seem to cause only leaf symptoms and do not noticeably affect growth or flowering of the plants, this will hopefully not impair the usability of this popular garden plant. References: (1) A. A. Brunt et al. Descriptions and Lists from the VIDE Database. Online publication. Version: 16th January, 1997. (2) J. Chen et al. Arch. Virol. 146:757, 2001. (3) A. Hein Phytopathol. Z. 28:205, 1957. (4) P. Lunello et al. Virus Res. 140:91, 2009.


Plant Disease ◽  
2006 ◽  
Vol 90 (11) ◽  
pp. 1461-1461 ◽  
Author(s):  
M. J. Soule ◽  
K. C. Eastwell ◽  
R. A. Naidu

Washington State is the largest producer of juice grapes (Vitis labruscana ‘Concord’ and Vitis labrusca ‘Niagara’) and ranks second in wine grape production in the United States. Grapevine leafroll disease (GLD) is the most wide spread and economically significant virus disease in wine grapes in the state. Previous studies (2) have shown that Grapevine leafroll associated virus-3 (GLRaV-3) is the predominant virus associated with GLD. However, little is known about the incidence and economic impact of GLD on juice and table grapes. Because typical GLD symptoms may not be obvious among these cultivars, the prevalence and economic impact of GLD in Concord and Niagara, the most widely planted cultivars in Washington State, has received little attention from the grape and nursery industries. During the 2005 growing season, 32 samples from three vineyards and one nursery of ‘Concord’ and three samples from one nursery of ‘Niagara’ were collected randomly. Petiole extracts were tested by single-tube reverse transcription-polymerase chain reaction (RT-PCR; 3) with primers LC 1 (5′-CGC TAG GGC TGT GGA AGT ATT-3′) and LC 2 (5′-GTT GTC CCG GGT ACC AGA TAT-3′), specific for the heat shock protein 70 homologue (Hsp70h gene) of GLRaV-3 (GenBank Accession No. AF037268). One ‘Niagara’ nursery sample and eleven ‘Concord’ samples from the three vineyards tested positive for GLRaV-3, producing a single band of the expected size of 546 bp. The ‘Niagara’ and six of the ‘Concord’ RT-PCR products were cloned in pCR2.1 (Invitrogen Corp, Carlsbad, CA) and the sequences (GenBank Accession Nos. DQ780885, DQ780886, DQ780887, DQ780888, DQ780889, DQ780890, and DQ780891) compared with the respective sequence of a New York isolate of GLRaV-3 (GenBank Accession No. AF037268). The analysis revealed that GLRaV-3 isolates from ‘Concord’ and ‘Niagara’ share nucleotide identities of 94 to 98% and amino acid identities and similarities of 97 to 98% with the Hsp70h gene homologue of the New York isolate of GLRaV-3. Additional testing by double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) using antibodies specific to GLRaV-3 (BIOREBA AG, Reinach, Switzerland) further confirmed these results in the ‘Niagara’ and two of the ‘Concord’ isolates. GLRaV-3 has previously been reported in labrusca cvs. Concord and Niagara in western New York (4) and Canada (1), but to our knowledge, this is the first report of GLRaV-3 in American grapevine species in the Pacific Northwest. Because wine and juice grapes are widely grown in proximity to each other in Washington State and grape mealybug (Pseudococcus maritimus), the putative vector of GLRaV-3, is present in the state vineyards, further studies will focus on the role of American grapevine species in the epidemiology of GLD. References: (1) D. J. MacKenzie et al. Plant Dis. 80:955, 1996. (2) R. R. Martin et al. Plant Dis. 89:763, 2005. (3) A. Rowhani et al. ICGV, Extended Abstracts, 13:148, 2000. (4) W. F. Wilcox et al. Plant Dis. 82:1062, 1998.


Plant Disease ◽  
2000 ◽  
Vol 84 (2) ◽  
pp. 202-202 ◽  
Author(s):  
L. Levy ◽  
V. Damsteegt ◽  
R. Welliver

Plum pox (Sharka) is the most important virus disease of Prunus in Europe and the Mediterranean region and is caused by Plum pox potyvirus (PPV). In September 1999, PPV-like symptoms were observed in peach fruit culls in a packinghouse in Pennsylvania. All symptomatic fruit originated from a single block of peach (P. persica cv. Encore) in Adams County. Trees in the block exhibited ring pattern symptoms on their leaves. A potyvirus was detected in symptomatic fruit using the Poty-Group enzyme-linked immunosorbent assay (ELISA) test from Agdia (Elkhart, IN). Reactions for symptomatic peach fruit and leaves also were positive using triple-antibody sandwich ELISA with the PPV polyclonal antibody from Bioreba (Carrboro, NC) for coating, the Poty-Group monoclonal antibody (MAb; Agdia) as the intermediate antibody, and double-antibody sandwich ELISA with PPV detection kits from Sanofi (Sanofi Diagnostics Pasteur, Marnes-La-Coquette, France) and Agdia and the REAL PPV kit (Durviz, Valencia, Spain) containing universal (5B) and strain typing (4DG5 and AL) PPV MAbs (1). PPV also was identified by immunocapture-reverse transcription-polymerase chain reaction (IC-RT-PCR) amplification and subsequent sequencing of the 220-bp 3′ noncoding region (2) (>99% sequence homology to PPV) and by IC-RT-PCR amplification of a 243-bp product in the coat protein (CP) gene (1). The virus was identified as PPV strain D based on serological typing with strainspecific MAbs and on PCR-restriction fragment length polymorphism of the CP IC-RT-PCR product with Rsa1 and Alu1 (1). This is the first report of PPV in North America. References: (1) T. Candresse et al. Phytopathology 88:198, 1998. (2) L. Levy and A. Hadidi. EPPO Bull. 24:595, 1994.


Sign in / Sign up

Export Citation Format

Share Document