scholarly journals Bacteria and Yeast Associated with Sugar Beet Root Rot at Harvest in the Intermountain West

Plant Disease ◽  
2008 ◽  
Vol 92 (3) ◽  
pp. 357-363 ◽  
Author(s):  
Carl A. Strausbaugh ◽  
Anne M. Gillen

An undescribed wet rot of roots was observed in surveys of recently harvested sugar beet roots in Idaho and eastern Oregon in 2004 and 2005. Microorganisms isolated from 287 roots fell into the following groups: A (41% of strains), B (29%), C (17%), D (11%), E (2%), and F (1%). Groups A, B, C, and F were composed of bacteria while groups D and E were yeasts. Subgroup A1 (80% of group A strains) included Leuconostoc mesenteroides subsp. dextranicum strains and subgroup A2 (20%) contained Lactobacillus strains. Group B was dominated by subgroup B1 (92% of strains), which included Gluconobacter strains. When only one organism was isolated from rotted roots, strains from subgroup A1 were isolated most frequently. Group C was composed of enteric bacteria. Strain B322 of L. mesenteroides subsp. dextranicum caused the most severe rot on root slices and produced symptoms similar to those in harvested roots. Results suggest that L. mesenteroides subsp. dextranicum is among the first bacterial species to enter sugar beet roots, closely following fungal infections or entering directly through openings such as growth cracks. The bacterial rot leads to yield loss in the field but likely also leads to storage and factory-processing problems.

2009 ◽  
Vol 31 (2) ◽  
pp. 232-240 ◽  
Author(s):  
Carl A. Strausbaugh ◽  
Anne M. Gillen

2021 ◽  
Vol 42 (2) ◽  
pp. 162-182
Author(s):  
M.E.H. Osman ◽  
A.M. Abo Shady ◽  
El-Sayed A. B. ◽  
Eman F. Abo ElKheir

2021 ◽  
Vol 131 ◽  
pp. 126392
Author(s):  
A.S. Eslami ◽  
N. Safaie ◽  
S.B. Mahmoudi ◽  
Sh. Mojerlou

2016 ◽  
Vol 106 (1) ◽  
pp. 76-86 ◽  
Author(s):  
Sebastian Liebe ◽  
Daniela S. Christ ◽  
Ralf Ehricht ◽  
Mark Varrelmann

Sugar beet root rot diseases that occur during the cropping season or in storage are accompanied by high yield losses and a severe reduction of processing quality. The vast diversity of microorganism species involved in rot development requires molecular tools allowing simultaneous identification of many different targets. Therefore, a new microarray technology (ArrayTube) was applied in this study to improve diagnosis of sugar beet root rot diseases. Based on three marker genes (internal transcribed spacer, translation elongation factor 1 alpha, and 16S ribosomal DNA), 42 well-performing probes enabled the identification of prevalent field pathogens (e.g., Aphanomyces cochlioides), storage pathogens (e.g., Botrytis cinerea), and ubiquitous spoilage fungi (e.g., Penicillium expansum). All probes were proven for specificity with pure cultures from 73 microorganism species as well as for in planta detection of their target species using inoculated sugar beet tissue. Microarray-based identification of root rot pathogens in diseased field beets was successfully confirmed by classical detection methods. The high discriminatory potential was proven by Fusarium species differentiation based on a single nucleotide polymorphism. The results demonstrate that the ArrayTube constitute an innovative tool allowing a rapid and reliable detection of plant pathogens particularly when multiple microorganism species are present.


2021 ◽  
Author(s):  
Jacob Botkin ◽  
Ashok K Chanda ◽  
Frank N Martin ◽  
Cory D Hirsch

Aphanomyces cochlioides, the causal agent of damping-off and root rot of sugar beet (Beta vulgaris L.), is a soil-dwelling oomycete responsible for yield losses in all major sugar beet growing regions. Currently, genomic resources for A. cochlioides are limited. Here we report a de novo genome assembly using a combination of long-read MinION (Oxford Nanopore Technologies) and short-read Illumina sequence data for A. cochlioides isolate 103-1, from Breckenridge, MN. The assembled genome was 76.3 Mb, with a contig N50 of 2.6 Mb. The reference assembly was annotated and was composed of 32.1% repetitive elements and 20,274 gene models. This high-quality genome assembly of A. cochlioides will be a valuable resource for understanding genetic variation, virulence factors, and comparative genomics of this important sugar beet pathogen.


2005 ◽  
pp. 103-111 ◽  
Author(s):  
Stevan Jasnic ◽  
Vera Stojsin ◽  
Ferenc Bagi

In recent years several types of sugarbeet root rot have occurred in our country causing significant economic damage. The most frequent symptoms are leaf chlorosis and brown-black wet necrosis of the root. The necrosis spread through the entire root and vascular strands. In the course of this study F. oxysporum was the most frequently isolated from infected sugar beet roots. The incidence of other fungi (Fusarium solani, Rhizoctonia solani and Macrophomina phaseolina) was much lower and it depended on weather conditions. High temperatures occurring during dry years encourage the development of F. oxysporum, the causer of sugar beet root rot. In 2000, an extremely dry year, plant vitality was satisfactory in the experiment with irrigation and the average root rot incidence was low (2,91%). In the nonirrigated variant the average incidence was high (71,02%). It may be concluded on the basis of the results from five years (2000-2004) that the major causal agents of sugarbeet root rot in our country are species from genus Fusarium, especially F. oxysporum. Fusarium wilt and root rot are due to the increased frequency of dry and warm years.


2014 ◽  
Vol 1 (2) ◽  
pp. 52-60
Author(s):  
V. Bulgakov ◽  
V. Adamchuk ◽  
H. Kaletnyk

The new design mathematical model of the sugar beet roots vibration digging-out process with the plowshare vibration digging working part has been created. In this case the sugar beet root is simulated as a solid body , while the plowshare vibration digging working part accomplishes fl uctuations in the longitudinal - vertical plane with the given amplitude and frequency in the process of work . The aim of the current research has been to determine the dependences between the design and kinematic parameters of the sugar beet roots vibra- tion digging-out technological process from soil , which provide the ir non-damage. Methods . For the aim ac- complishment, the methods of design mathematical models constructing based on the classical laws of me- chanics are applied. The solution of the obtained differential equations is accomplished with the PC involve- ment. Results . The differential equations of the sugar beet root’s motion in course of the vibration digging-out have been comprised . They allow to determine the admissible velocity of the vibration digging working part’s forward motion depending on the angular parameters of the latter. In the result of the computational simula- tion i.e., the solution of the obtained analytical dependence by PC, the graphic dependences of the admissible velocity of plowshare v ibration digging working part’s forward motion providing the extraction of the sugar beet root from soil without the breaking-off of its tail section have been determined. Conclusions . Due to the performed analytical research , it has been established that γ = 13 ... 16 ° , β = 20 ... 30 ° should be considered as the most reasonable values of γ and β angles of the vibration digging working part providing both its forward motion optimum speed and sugar beet root digging-out from the soil without damage . On the ground of the data obtained from the analytical rese arch, the new vibration digging working parts for the sugar beet roots have been designed; also the patents of Ukraine for the inventions have been obtained for them.


Antibiotics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 277
Author(s):  
Raluca Cosgarea ◽  
Sigrun Eick ◽  
Ionela Batori-Andronescu ◽  
Søren Jepsen ◽  
Nicole B. Arweiler ◽  
...  

The aim of this study was to evaluate the clinical and microbiological effects of subgingival instrumentation (SI) alone or combined with either local drug delivery (LDD) or photodynamic therapy (PDT) in persistent/recurrent pockets in patients enrolled in supportive periodontal therapy (SPT). A total of 105 patients enrolled in SPT were randomly treated as follows: group A (n = 35): SI +PDT and 7 days later 2nd PDT; group B (n = 35): SI+LDD; group C (n = 35): SI (control). Prior intervention, at 3 and 6 months after therapy, probing pocket depths, clinical attachment level, number of treated sites with bleeding on probing (n BOP), full mouth plaque and bleeding scores (gingival bleeding index, %BOP) were recorded. At the same time points, 8 periodontopathogens were quantitatively determined. All three treatments resulted in statistically significant improvements (p < 0.05) of all clinical parameters without statistically significant intergroup differences (p > 0.05). Several bacterial species were reduced in both test groups, with statistically significantly higher reductions for LDD compared to PDT and the control group. In conclusion, the present data indicate that: (a) In periodontal patients enrolled in SPT, treatment of persistent/recurrent pockets with SI alone or combined with either PDT or LDD may lead to comparable clinical improvements and (b) the adjunctive use of LDD appears to provide better microbiological improvements for some periodontal pathogens than SI alone or combined with PDT.


Sign in / Sign up

Export Citation Format

Share Document