scholarly journals First Report of Diaporthe phaseolorum on Sunflower (Helianthus annuus) in Croatia

Plant Disease ◽  
2009 ◽  
Vol 93 (10) ◽  
pp. 1074-1074 ◽  
Author(s):  
K. Vrandecic ◽  
J. Cosic ◽  
D. Jurkovic ◽  
T. Duvnjak ◽  
L. Riccioni

Sunflower (Helianthus annuus L.) is a crop that is grown worldwide for the production of edible oil. In Croatia, it has considerable economic significance. From 2004 to 2007, sunflower stems showed light-to-dark brown lesions of different sizes and shapes. The lesions were observed for the presence of pycnidia in affected areas. Isolations from infected tissue on potato dextrose agar (PDA) yielded in two fungal species. One, which was isolated in most cases, was the well known sunflower pathogen Diaporthe helianthi Munt. Cvet. Morphological characteristics, stromata pattern, formation of alpha and beta conidia, and ascostromata characteristic of the other isolated fungus matched the description of D. phaseolorum (Cooke & Ellis) Sacc. (2). D. phaseolorum frequency was 5%. On PDA, the fungus formed white, floccose, aerial mycelium that filled a petri dish (9 cm) in 6 days. D. phaseolorum produces conidiomata in black stromatic structures, which consist of pycnidia with alpha and beta conidia. The alpha conidia were unicellular, hyaline, ellipsoidal to fusiform, and 5.6 to 10.0 × 1.9 to 4.8 μm. The beta conidia were hyaline, elongated, filiform, straight, curved at one or both ends, and 11.7 to 27.6 × 0.7 to 2.0 μm. After 50 days, perithecia were formed. Asci were clavate and 27.64 to 40.1 × 5.70 to 8.2 μm. Eight ascospores formed within asci. Ascospores were two-celled, elliptic, hyaline, and slightly constricted at the septa, and 8.93 to 13.5 × 2.1 to 4.0 μm. Amplification and sequencing of the internal transcribed spacer (ITS) rDNA region were performed with ITS4 and ITS5 universal primers (3) on two isolates (Su9 and Su10) and data were deposited in GenBank (Accession Nos. GQ149763 and GQ149764). Comparison of sequences available in GenBank revealed that the ITS sequence was identical to D. phaseolorum found on Stokesia laevis Hill (Greene) (U11323/U11373) and identical to the strain CBS 116020 isolated from Aster exilis Elliot. (AY745018). On the basis of the obtained results of morphological characteristics and molecular approaches, the pathogen was identified as D. phaseolorum. Pathogenicity evaluation consisted of artificial infections on field-grown sunflower plants at the full button stage as described by Bertrand and Tourvielle (1). A leaf test was done by placing a mycelial plug of 5 × 5 mm from a cork borer of two isolates (Su9 and Su10) on the tip of the main vein. The inoculation site was covered with moistened, cotton wool and wrapped in aluminum foil to prevent the inoculum from drying out. Ten plants of each of the four replications were inoculated. Control plants were inoculated with pure PDA plugs. Lesions of 12 to 40 mm long were observed on the sunflower leaf 10 days after inoculation. Control plants did not develop symptoms. The pathogen was reisolated from the infected plants. To our knowledge, this is the first report of the finding of D. phaseolorum on sunflower in Croatia and we have no literature data about the occurrence of this fungus on sunflower in the world. References: (1) F. Bertrand and D. Tourvielle. Inf. Tech. CETIOM 98:12,1972. (2) E. Punithalingma and P. Holliday. No. 336 in: Descriptions of Pathogenic Fungi and Bacteria. CMI/CAB, Kew, Surrey, England, 1972. (3) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. M. A. Innis et al., eds. Academic Press, Inc., New York, 1990.

Plant Disease ◽  
2011 ◽  
Vol 95 (5) ◽  
pp. 612-612 ◽  
Author(s):  
K. Vrandecic ◽  
D. Jurkovic ◽  
J. Cosic ◽  
J. Postic ◽  
L. Riccioni

A cane disease of blackberry (Rubus sp.) cv. Thornfree was observed in May and June 2010 in two growing regions in the eastern part of Slavonia in Croatia. Symptoms consisted of bleached areas between and around cane nodes with some canes showing wilt symptoms. Infected areas were covered with numerous, black pycnidia immersed in the epidermal tissue. Disease occurrence in orchards growing cv. Thornfree ranged between 1 and 15%. Thirty disease samples were collected, disinfected (1 min in 70% ethanol and 2 min in 1% NaOCl), and placed in a moist chamber for 4 days. Fungal sporulating structures were then picked off and placed on potato dextrose agar (PDA). Fungal isolates obtained were identified as a Phomopsis sp., the conidial state of Diaporthe (3), on the basis of cultural and morphological characteristics. Alpha conidia were unicellular, hyaline, fusiform, sometimes tapering toward one or both ends, biguttulate (sometimes with several guttules), and 5.2 to 9.7 × 1.4 to 2.7 μm (average 6.5 × 2.1 μm). Beta conidia were hyaline, aseptate, filiform, hamate, and 16.6 to 28.2 × 0.5 to 1.5 μm (average 24.0 × 1.1 μm). The teleomorph was not observed. Biomolecular analysis was performed to identify the fungal species by sequencing the internal transcribed spacer (ITS) region spanning ITS 1, 5.8S rDNA, and ITS 2 of two isolates (Phk1 and Phk2). The amplified product was sequenced (GenLab-Enea, Rome, Italy) and a BLAST search of the NCBI nucleotide database was performed. Sequences from Phk1 and Phk2 (GenBank Accession Nos. HQ533144 and HQ533143, respectively) were identical to authentic and vouchered Diaporthe eres Nitschke (GenBank DQ491514, BPI 748435, and CBS 109767) ITS sequences in GenBank. Fungal isolates for pathogenicity tests were grown on PDA at 25°C for 7 days (12 h light/dark regimen). Inoculations were made on 30 to 40 cm long green shoots of potted plants of the blackberry cv. Thornfree. One-centimeter long wounds were made with a sterile scalpel and mycelia of D. eres were placed in the wounds. Inoculation sites were covered with a piece of wet cotton wool and aluminum foil to retain moisture. Three replications of 10 plants each were inoculated and these plus 10 control plants (inoculated with plugs of PDA only) were maintained in a growth chamber at 25°C. After 25 days, lesions developed on all 30 inoculated plants that averaged 15 mm long and control plants remained symptomless. D. eres was reisolated from inoculated plants, thus completing Koch's postulates. Phomopsis spp. have previously been reported on blackberry canes in Serbia (1) and Yugoslavia (2,4), however, to our knowledge, this is the first report of the occurrence of D. eres (anamorph P. oblonga) on blackberry in Croatia. References: (1) M. Arsenijevic. Biljni Lekar 34:117, 2006. (2) M. Muntanola-Cvetkovic et al. Zast. Bilja 36:325, 1985. (3) B. C. Sutton. Page 569 in: The Coelomycetes. CMI, Kew, Surrey, UK, 1980. (4) M. Veselic et al. Zast. Bilja 49:76, 1998.


Plant Disease ◽  
2010 ◽  
Vol 94 (8) ◽  
pp. 1069-1069 ◽  
Author(s):  
J. C. Bienapfl ◽  
D. K. Malvick ◽  
J. A. Percich

Multiple Fusarium species have been found in association with soybean (Glycine max) plants exhibiting root rot in the United States (3). Soybean plants that lacked apparent foliar symptoms, but exhibited 2- to 5-mm brown, necrotic taproot lesions and lateral root necrosis were observed in Minnesota in one field each in Marshall and Otter Tail counties in July of 2007, as well as in one field in Marshall County in July of 2008. Sampling was conducted as part of a study investigating root rot in major soybean-production areas of Minnesota. Plants were arbitrarily dug up at the R3 growth stage. Root systems were washed, surface disinfested in 0.5% NaOCl for 3 min, rinsed in deionized water, and dried. Fusarium isolates were recovered from root sections with necrotic lesions embedded in modified Nash-Snyder medium (1). One resulting Fusarium colony from one plant per county was transferred to half-strength acidified potato dextrose agar (PDA) and carnation leaf agar (CLA) to examine morphological characteristics (4). Culture morphology on PDA consisted of flat mycelium with sparse white aerial mycelium. On CLA, thick-walled macroconidia with a hooked apical cell and a foot-shaped basal cell were produced in cream-colored sporodochia. Macroconidia ranged from 32.5 to 45.0 μm long. Microconidia were oval to cylindrical with 0 to 1 septa, ranged from 7.5 to 11.25 μm long, and were produced on monophialides. Chlamydospores were produced abundantly in chains that were terminal and intercalary in the hyphae of 4-week-old cultures. Morphological characteristics of the three isolates were consistent with descriptions of F. redolens (2,4). The identity of each isolate was confirmed by sequencing the translation elongation factor 1-α (TEF) locus (4). BLAST analysis of the TEF sequences from each isolate against the FUSARIUM-ID database resulted in a 100% match for 17 accessions of F. redolens (e.g., FD 01103, FD 01369). Each F. redolens isolate was tested for pathogenicity on soybean. Sterile sorghum grain was infested with each isolate and incubated for 2 weeks. Sterile sorghum was used for control plants. Soybean seeds of cv. AG2107 were planted in 11.4-cm pots ~1 cm above a 25-cm3 layer of infested sorghum or sterile sorghum. Two replicate pots containing four plants each were used per treatment and the experiment was repeated once. Root rot was assessed 28 days after planting. Each F. redolens isolate consistently caused taproot necrosis on inoculated plants, whereas control plants did not exhibit root necrosis. Isolations were made from roots of inoculated and control plants and the isolates recovered from inoculated plants were identified as F. redolens based on morphological characteristics and TEF sequences. Fusarium species were not isolated from control plants. To our knowledge, this is the first report of F. redolens causing root rot of soybean; however, it is possible F. redolens has been found previously and misidentified as F. oxysporum (2,4). Results from inoculations suggest that F. redolens may be an important root rot pathogen in Minnesota soybean fields. References: (1) J. C. Bienapfl et al. Acta Hortic. 668:123, 2004. (2) C. Booth and J. M. Waterston. No. 27 in: CMI Descriptions of Pathogenic Fungi and Bacteria. CMI, Kew, England, 1964. (3) G. L. Hartman et al. Compendium of Soybean Diseases. 4th ed. The American Phytopathological Society, St. Paul, MN, 1999. (4) J. F. Leslie and B. A. Summerell. The Fusarium Laboratory Manual. Blackwell Publishing, Ames, IA, 2006.


Plant Disease ◽  
2021 ◽  
Author(s):  
Charles Krasnow ◽  
Nancy Rechcigl ◽  
Jennifer Olson ◽  
Linus Schmitz ◽  
Steven N. Jeffers

Chrysanthemum (Chrysanthemum × morifolium) plants exhibiting stem and foliage blight were observed in a commercial nursery in eastern Oklahoma in June 2019. Disease symptoms were observed on ~10% of plants during a period of frequent rain and high temperatures (26-36°C). Dark brown lesions girdled the stems of symptomatic plants and leaves were wilted and necrotic. The crown and roots were asymptomatic and not discolored. A species of Phytophthora was consistently isolated from the stems of diseased plants on selective V8 agar (Lamour and Hausbeck 2000). The Phytophthora sp. produced ellipsoid to obpyriform sporangia that were non-papillate and persistent on V8 agar plugs submerged in distilled water for 8 h. Sporangia formed on long sporangiophores and measured 50.5 (45-60) × 29.8 (25-35) µm. Oospores and chlamydospores were not formed by individual isolates. Mycelium growth was present at 35°C. Isolates were tentatively identified as P. drechsleri using morphological characteristics and growth at 35°C (Erwin and Ribeiro 1996). DNA was extracted from mycelium of four isolates, and the internal transcribed spacer (ITS) region was amplified using universal primers ITS 4 and ITS 6. The PCR product was sequenced and a BLASTn search showed 100% sequence similarity to P. drechsleri (GenBank Accession Nos. KJ755118 and GU111625), a common species of Phytophthora that has been observed on ornamental and vegetable crops in the U.S. (Erwin and Ribeiro 1996). The gene sequences for each isolate were deposited in GenBank (accession Nos. MW315961, MW315962, MW315963, and MW315964). These four isolates were paired with known A1 and A2 isolates on super clarified V8 agar (Jeffers 2015), and all four were mating type A1. They also were sensitive to the fungicide mefenoxam at 100 ppm (Olson et al. 2013). To confirm pathogenicity, 4-week-old ‘Brandi Burgundy’ chrysanthemum plants were grown in 10-cm pots containing a peat potting medium. Plants (n = 7) were atomized with 1 ml of zoospore suspension containing 5 × 103 zoospores of each isolate. Control plants received sterile water. Plants were maintained at 100% RH for 24 h and then placed in a protected shade-structure where temperatures ranged from 19-32°C. All plants displayed symptoms of stem and foliage blight in 2-3 days. Symptoms that developed on infected plants were similar to those observed in the nursery. Several inoculated plants died, but stem blight, dieback, and foliar wilt were primarily observed. Disease severity averaged 50-60% on inoculated plants 15 days after inoculation. Control plants did not develop symptoms. The pathogen was consistently isolated from stems of symptomatic plants and verified as P. drechsleri based on morphology. The pathogenicity test was repeated with similar results. P. drechsleri has a broad host range (Erwin and Ribeiro 1996; Farr et al. 2021), including green beans (Phaseolus vulgaris), which are susceptible to seedling blight and pod rot in eastern Oklahoma. Previously, P. drechsleri has been reported on chrysanthemums in Argentina (Frezzi 1950), Pennsylvania (Molnar et al. 2020), and South Carolina (Camacho 2009). Chrysanthemums are widely grown in nurseries in the Midwest and other regions of the USA for local and national markets. This is the first report of P. drechsleri causing stem and foliage blight on chrysanthemum species in the United States. Identifying sources of primary inoculum may be necessary to limit economic loss from P. drechsleri.


Plant Disease ◽  
2005 ◽  
Vol 89 (4) ◽  
pp. 432-432 ◽  
Author(s):  
P. Jimenez ◽  
T. A. Zitter

In early August 2004, pumpkin and zucchini squash (Cucurbita pepo) plants grown in conventional and organic commercial operations in Orange and Dutchess counties, respectively, showed spindle-shaped lesions on vegetative tissues and silver russeting and spots on fruit, typical of Plectosporium blight. Approximately 20% of pumpkin fruit were affected at this early time in yield development, while the zucchini planting had been abandoned due to disease. Symptomatic pieces of stem, petioles, and main leaf veins were excised, surface disinfected with 0.5% sodium hypochlorite, placed on one-quarter-strength potato dextrose agar, and incubated at 21°C with a 12-h photoperiod. Pale pink colonies with pinkish, hyaline, aerial mycelium developed from the tissues. When examined microscopically, simple and branched conidiophores with apical phialides were observed, as well as non- and one-septate ellipsoidal to slightly curved conidia that measured 7.5 to 13.0 × 2.5 to 3.3 μm. The fungus fits the description of Plectosporium tabacinum (van Beyma) M.E. Palm, W. Gams, & H.I. Nirenberg (synonyms Microdochium tabacinum (von Arx, 1984) and Fusarium tabacinum (Gams & Gerlagh, 1968) (1). Pathogenicity was tested on 10 seedlings each of pumpkin, zucchini, gourd (C. pepo), winter squash (C. moschata), and cucumber (Cucumis sativa). Plants were spray inoculated at the three true-leaf stage with a spore suspension at 104 conidia/ml in water with 1% gelatin. Plants were held overnight in a moist chamber and then transplanted into 12-cm-diameter pots and kept in the greenhouse for the rest of the experiment. P. tabacinum was reisolated from all inoculated plants which completes Koch's postulates. Symptoms were noted 3 days after inoculation on pumpkin, zucchini, and gourd, with typical spindle-shaped lesions on the main stem, petioles, and main leaf veins (2). Symptoms developed after 1 week on winter squash, and lesions were mostly concentrated on the older portion of the stem with occasional lesions on the petiole and main leaf veins. Symptoms on cucumber, however, did not develop until 2 weeks after inoculation and appeared as an inconspicuous line of coalesced lesions on the ridges of the main stem only. These symptoms could easily be misidentified as physical abrasions from handling or from wind scarring. These results confirm the high susceptibility of C. pepo species, and indicate that other cucurbits are susceptible, albeit at a lower level. To our knowledge, this is the first report of P. tabacinum in New York. A voucher specimen has been deposited in the Cornell Plant Pathology Herbarium (Accession No. CUP 67504). References: (1) M. E. Palm et al. Mycologia 87:397, 1995; (2) T. A. Zitter. Microdochium blight. Page 28 in: Compendium of Cucurbit Diseases. T. A. Zitter, D. L. Hopkins, and C. E. Thomas, eds. The American Phytopathological Society, St. Paul, MN, 1996.


Plant Disease ◽  
2021 ◽  
Author(s):  
Yanxiang Qi ◽  
Yanping Fu ◽  
Jun Peng ◽  
Fanyun Zeng ◽  
Yanwei Wang ◽  
...  

Banana (Musa acuminate L.) is an important tropical fruit in China. During 2019-2020, a new leaf spot disease was observed on banana (M. acuminate L. AAA Cavendish, cv. Formosana) at two orchards of Chengmai county (19°48ʹ41.79″ N, 109°58ʹ44.95″ E), Hainan province, China. In total, the disease incidence was about 5% of banana trees (6 000 trees). The leaf spots occurred sporadically and were mostly confined to the leaf margin, and the percentage of the leaf area covered by lesions was less than 1%. Symptoms on the leaves were initially reddish brown spots that gradually expanded to ovoid-shaped lesions and eventually become necrotic, dry, and gray with a yellow halo. The conidia obtained from leaf lesions were brown, erect or curved, fusiform or elliptical, 3 to 4 septa with dimensions of 13.75 to 31.39 µm × 5.91 to 13.35 µm (avg. 22.39 × 8.83 µm). The cells of both ends were small and hyaline while the middle cells were larger and darker (Zhang et al. 2010). Morphological characteristics of the conidia matched the description of Curvularia geniculata (Tracy & Earle) Boedijn. To acquire the pathogen, tissue pieces (15 mm2) of symptomatic leaves were surface disinfected in 70% ethanol (10 s) and 0.8% NaClO (2 min), rinsed in sterile water three times, and transferred to potato dextrose agar (PDA) for three days at 28°C. Grayish green fungal colonies appeared, and then turned fluffy with grey and white aerial mycelium with age. Two representative isolates (CATAS-CG01 and CATAS-CG92) of single-spore cultures were selected for molecular identification. Genomic DNA was extracted from the two isolates, the internal transcribed spacer (ITS), large subunit ribosomal DNA (LSU rDNA), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), translation elongation factor 1-alpha (TEF1-α) and RNA polymerase II second largest subunit (RPB2) were amplified and sequenced with universal primers ITS1/ITS4, LROR/LR5, GPD1/GPD2, EF1-983F/EF1-2218R and 5F2/7cR, respectively (Huang et al. 2017; Raza et al. 2019). The sequences were deposited in GenBank (MW186196, MW186197, OK091651, OK721009 and OK491081 for CATAS-CG01; MZ734453, MZ734465, OK091652, OK721100 and OK642748 for CATAS-CG92, respectively). For phylogenetic analysis, MEGA7.0 (Kumar et al. 2016) was used to construct a Maximum Likelihood (ML) tree with 1 000 bootstrap replicates, based on a concatenation alignment of five gene sequences of the two isolates in this study as well as sequences of other Curvularia species obtained from GenBank. The cluster analysis revealed that isolates CATAS-CG01 and CATAS-CG92 were C. geniculata. Pathogenicity assays were conducted on 7-leaf-old banana seedlings. Two leaves from potted plants were stab inoculated by puncturing into 1-mm using a sterilized needle and placing 10 μl conidial suspension (2×106 conidia/ml) on the surface of wounded leaves and equal number of leaves were inoculated with sterile distilled water serving as control (three replicates). Inoculated plants were grown in the greenhouse (12 h/12 h light/dark, 28°C, 90% relative humidity). Necrotic lesions on inoculated leaves appeared seven days after inoculation, whereas control leaves remained healthy. The fungus was recovered from inoculated leaves, and its taxonomy was confirmed morphologically and molecularly, fulfilling Koch’s postulates. C. geniculata has been reported to cause leaf spot on banana in Jamaica (Meredith, 1963). To our knowledge, this is the first report of C. geniculata on banana in China.


Plant Disease ◽  
2012 ◽  
Vol 96 (6) ◽  
pp. 906-906 ◽  
Author(s):  
M. F. Chuang ◽  
H. F. Ni ◽  
H. R. Yang ◽  
S. L. Shu ◽  
S. Y. Lai ◽  
...  

Pitaya (Hylocereus undatus and H. polyrhizus Britt. & Rose), a perennial succulent plant grown in the tropics, is becoming an emerging and important fruit plant in Taiwan. In September of 2009 and 2010, a number of pitaya plants were found to have a distinctive canker on stems. The disease expanded quickly to most commercial planting areas in Taiwan (e.g., Pintung, Chiayi, and Chunghua). Symptoms on the stem were small, circular, sunken, orange spots that developed into cankers. Pycnidia were erumpent from the surface of the cankers and the stems subsequently rotted. After surface disinfestation with 0.1% sodium hypochloride, tissues adjacent to cankers were placed on acidified potato dextrose agar (PDA) and incubated at room temperature for 1 week, after which colonies with dark gray-to-black aerial mycelium grew. Hyphae were branched, septate, and brown and disarticulated into 0- to 1-septate arthrospores. Sporulation was induced by culturing on sterile horsetail tree (Casuarina equisetifolia) leaves. Conidia (12.79 ± 0.72 × 5.14 ± 0.30 μm) from pycnidia were one-celled, hyaline, and ovate. The internal transcribed spacer (ITS) region of ribosomal DNA was PCR amplified with primers ITS1 and ITS4 (2) and sequenced. The sequence (GenBank Accession No. HQ439174) showed 99% identity to Neoscytalidium dimidiatum (Penz.) Crous & Slippers (GenBank Accession No. GQ330903). On the basis of morphology and nucleotide-sequence identity, the isolates were identified as N. dimidiatum (1). Pathogenicity tests were conducted in two replicates by inoculating six surface-sterilized detached stems of pitaya with either mycelium or conidia. Mycelial plugs from 2-day-old cultures (incubated at 25°C under near UV) were inoculated to the detached stems after wounding with a sterile needle. Conidial suspensions (103 conidia/ml in 200 μl) were inoculated to nonwounded stems. Noninoculated controls were treated with sterile medium or water. Stems were then incubated in a plastic box at 100% relative humidity and darkness at 30°C for 2 days. The symptoms described above were observed on inoculated stems at 6 to 14 days postinoculation, whereas control stems did not develop any symptoms. N. dimidiatum was reisolated from symptomatic tissues. To our knowledge, this is the first report of N. dimidiatum causing stem canker of pitaya. References: (1) P. W. Crous et al. Stud. Mycol. 55:235, 2006. (2) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. M. A. Innis et al., eds. Academic Press, New York, 1990.


Plant Disease ◽  
2021 ◽  
Author(s):  
Nathali López-Cardona ◽  
YUDY ALEJANDRA GUEVARA ◽  
Lederson Gañán-Betancur ◽  
Carol Viviana Amaya Gomez

In October 2018, soybean plants displaying elongated black to reddish-brown lesions on stems were observed in a field planted to the cv. BRS Serena in the locality of Puerto López (Meta, Colombia), with 20% incidence of diseased plants. Symptomatic stems were collected from five plants, and small pieces (∼5 mm2) were surface sterilized, plated on potato dextrose agar (PDA) and incubated for 2 weeks at 25°C in darkness. Three fungal isolates with similar morphology were obtained, i.e., by subculturing single hyphal tips, and their colonies on PDA were grayish-white, fluffy, with aerial mycelium, dark colored substrate mycelium, and produced circular black stroma. Pycnidia were globose, black, occurred as clusters, embedded in tissue, erumpent at maturity, with an elongated neck, and often had yellowish conidial cirrus extruding from the ostiole. Alpha conidia were observed for all isolates after 30 days growth on sterile soybean stem pieces (5 cm) on water agar, under 25ºC and 12 h light/12h darkness photoperiod. Alpha conidia (n = 50) measured 6.0 – 7.0 µm (6.4 ± 0.4 µm) × 2.0 – 3.0 µm (2.5± 0.4 µm), were aseptate, hyaline, smooth, ellipsoidal, often biguttulate, with subtruncate base. Beta conidia were not observed. Observed morphological characteristics of these isolates were similar to those reported in Diaporthe spp. by Udayanga et al. (2015). DNA from each fungal isolate was used to sequence the internal transcribed spacer region (ITS), and the translation elongation factor 1-α (TEF1) gene, using the primer pairs ITS5/ITS4 (White et al. 1990) and EF1-728F/EF1- 986R (Carbone & Kohn, 1999), respectively. Results from an NCBI-BLASTn, revealed that the ITS sequences of the three isolates (GenBank accessions MW566593 to MW566595) had 98% (581/584 bp) identity with D. miriciae strain BRIP 54736j (NR_147535.1), whereas the TEF1 sequences (GenBank accessions MW597410 to MW597412) had 97 to 100% (330-339/339 bp) identity with D. ueckerae strain FAU656 (KJ590747). The species Diaporthe miriciae R.G. Shivas, S.M. Thomps. & Y.P. Tan, and Diaporthe ueckerae Udayanga & Castl. are synonymous, with the latter taking the nomenclature priority (Gao et al. 2016). According to a multilocus phylogenetic analysis, by maximum likelihood, the three isolates clustered together in a clade with reference type strains of D. ueckerae (Udayanga et al. 2015). Soybean plants cv. BRS Serena (growth stages V3 to V4) were used to verify the pathogenicity of each isolate using a toothpick inoculation method (Mena et al. 2020). A single toothpick colonized by D. ueckerae was inserted directly into the stem of each plant (10 plants per isolate) approximately 1 cm below the first trifoliate node. Noncolonized sterile toothpicks, inserted in 10 soybean plants served as the non-inoculated control. Plants were arbitrarily distributed inside a glasshouse, and incubated at high relative humidity (>90% HR). After 15 days, inoculated plants showed elongated reddish-brown necrosis at the inoculated sites, that were similar to symptoms observed in the field. Non-inoculated control plants were asymptomatic. Fungal cultures recovered from symptomatic stems were morphologically identical to the original isolates. This is the first report of soybean stem canker caused by D. ueckerae in Colombia. Due to the economic importance of this disease elsewhere (Backman et al. 1985; Mena et al. 2020), further research on disease management strategies to mitigate potential crop losses is warranted.


Plant Disease ◽  
1999 ◽  
Vol 83 (2) ◽  
pp. 198-198
Author(s):  
C. Nali

A powdery mildew disease of variegated ivy (Hedera canariensis L. var. azorica) was observed on the Tyrrhenian coast in Tuscany (Italy) in spring 1998. Symptoms began as small, nearly circular reddish spots that later enlarged and coalesced. The hyaline mycelium produced abundant, ellipsoid conidia in long chains that ranged from 20 to 40 μm in length and from 12 to 25 μm in width. Cleistothecia were globose (100 to 120 μm diameter), dark brown (when mature) with a basal ring of mycelioid appendages, and contained several (up to 20) ovate asci, each generally containing two ascospores. Ascospores were hyaline, one-celled, ellipsoid (20 to 35 μm in length and 10 to 20 μm in width). The morphological characteristics of this fungus were those given for Erysiphe cichoracearum DC. Infection also was found on English ivy (Hedera helix L.). It is reported that this species is, occasionally, subject to powdery mildew caused by E. cichoracearum (1). Conidia from infected leaves were shaken onto leaves of melon (Cucumis melo L.), cucumber (Cucumis sativus L.), watermelon (Citrullus lanatus [Thunb.] Matsum. & Nakai), lettuce (Lactuca sativa L.), tomato (Lycopersicon esculentum Mill.), tobacco (Nicotiana tabacum L.) and variegated and English ivy. After 7 days, the disease was observed on cucumber, melon, watermelon, tobacco, and variegated ivy. Examination confirmed that test plants were infected with E. cichoracearum. This is the first report of E. cichoracearum on variegated ivy in Italy. Reference: (1) P. P. Pirone. 1970. Diseases and Pests of Ornamental Plants. The Ronald Press, New York.


Plant Disease ◽  
2014 ◽  
Vol 98 (3) ◽  
pp. 420-420 ◽  
Author(s):  
S. Chebil ◽  
R. Fersi ◽  
A. Yakoub ◽  
S. Chenenaoui ◽  
M. Chattaoui ◽  
...  

In 2011, common symptoms of grapevine dieback were frequently observed in 2- to 5-year-old table grape (Vitis vinifera L.) cvs. in four vineyards located in northern Tunisia. The symptoms included dead spur and cordons, shoot dieback, and sunken necrotic bark lesions, which progressed into the trunk resulting in the death of large sections of the vine. Longitudinal and transversal sections of cordons and spurs from symptomatic vines revealed brown wedge-shaped cankers of hard consistency. Twelve symptomatic samples from spur and cordons were collected, surface disinfected by dipping into 5% (v/v) sodium hypochlorite for 2 min, and small pieces from the edge of necrotic and healthy tissue were removed and plated onto potato dextrose agar (PDA) at 25°C in the dark. Based on colony and conidia morphological characteristics, isolates were divided in three species, named Diplodia seriata, Botryosphaeria dothidea, and Neofusicoccum luteum. D. seriata colonies were gray-brown with dense aerial mycelium producing brown cylindric to ellipsoid conidia rounded at both ends and averaged 22.4 × 11.7 μm (n = 50). B. dothidea colonies were initially white with abundant aerial mycelium, gradually becoming dark green olivaceous. Conidia were fusiform to fusiform elliptical with a subobtuse apex and averaged 24.8 × 4.7 μm (n = 50). N. luteum colonies were initially pale to colorless, gradually darkening with age and becoming gray to dark gray producing a yellow pigment that diffuses into the agar. Conidia were hyaline, thin-walled, aseptate, fusiform to fusiform elliptical, and averaged 19.8 × 5.5 μm (n = 50). Identity of the different taxa was confirmed by sequence analyses of the internal transcribed spacer (ITS1-5.8S-ITS2) region of the rDNA and part of the elongation factor 1-alpha (EF1-α) gene. BLAST analysis of sequences indicated that six isolates were identified as D. seriata (GenBank: AY259094, AY343353), one isolate as B. dothidea (AY236949, AY786319) and one isolate as N. luteum (AY259091, AY573217). Sequences were deposited in GenBank under accessions from KC178817 to KC178824 and from KF546829 to KF546836 for ITS region and EF1-α gene, respectively. A pathogenicity test was conducted on detached green shoots cv. Italia for the eight Botryosphaeriaceae isolates. Shoots were inoculated by placing a colonized agar plug (5 mm diameter) from the margin of a 7-day-old colony on fresh wound sites made with a sterilized scalpel. Each wound was covered with moisturized cotton and sealed with Parafilm. Control shoots were inoculated using non-colonized PDA plugs. After 6 weeks, discoloration of xylem and phloem and necrosis with average length of 38.8, 17.6, and 11.2 mm were observed from inoculated shoots with D. seriata, N. luteum, and B. dothidea, respectively, and all three fungi were re-isolated from necrotic tissue, satisfying Koch's postulates. Control shoots showed no symptoms of the disease and no fungus was re-isolated. In Tunisia, Botryosphaeria-related dieback was reported only on citrus tree caused by B. ribis (2), on Pinus spp. caused by D. pinea (4), on Quercus spp. caused by D. corticola (3), and on olive tree (Olea europea) caused by D. seriata (1). To our knowledge, this is the first report of D. seriata, B. dothidea, and N. luteum associated with grapevine dieback in Tunisia. References: (1) M. Chattaoui et al. Plant Dis. 96:905, 2012. (2) H. S. Fawcett. Calif. Citrogr. 16:208, 1931. (3) B. T. Linaldeddu et al. J. Plant Pathol. 91:234. 2009. (4) B. T. Linaldeddu et al. Phytopathol. Mediterr. 47:258, 2008.


Plant Disease ◽  
2021 ◽  
Author(s):  
Qing Qu ◽  
Liu Shiwei ◽  
Ning Liu ◽  
Yunxia Liu ◽  
Jia Hui ◽  
...  

Abelmoschus manihot (Linn. ) Medicus (A. manihot) is an annual to perennial herb of the Malvaceae okra, mainly distributed in Guangdong, Guangxi, Fujian, Hunan, Hubei provinces. It can not only be used as an ornamental flower, but also has important economic and medicinal value. Last year, 10% A. manihot in 1,000 acres were observed with stalk rot in the Zhongshang Agricultural Industrial Park, 50 meters east of Provincial Highway 235 in Gaoyang County of Hebei province. Internal discoloration of the stem began brown to black discoloration of the vascular system and became hollow, with the mycelium growing on the surface. Stems from symptomatic plants (approximately 5 mm2) were dissected, washed free of soil, then soaked in 75% ethanol for 16 s to surface-sterilize, and 40 s in HgCl2, then rinsed three times in sterile water. After being dried with blotting paper, five pieces were placed on potato dextrose agar (PDA). After cultured 2 or 3 days, five isolates were purified and re-cultured on PDA in the dark at 25°C. The color of the colony was white. The hyphae were radial in PDA, and the aerial hyphae were flocculent, well-developed with luxuriant branches. The colonies were white and floccus, and the aerial hyphae were well developed, branched and without septum on corn meal agar (CMA). The sporangia were large or petal shaped, composed of irregular hyphae, terminal or intermediate , with the size of (31.6-88.4) μm ×(12.7- 14.6) μm. Vesicles were spherical, terminal or intermediate, ranging from 14.6 to 18.5μm. Oogonia were globose, terminal and smooth which stipe was straight. Antheridia were clavate or baggy and mostly intercalary, sometimes terminal. Oospores were aplerotic, 21.5 to 30.0 μm in diameter, 1.6 to 3.1 μm in wall thickness. The isolates morphological characteristics were consistent with P. aphanidermatum (van der Plaats-Niterink 1981, Wu et al. 2021 ). To identify the isolates, universal primers ITS1/ITS4 (White et al. 1993) were used for polymerase chain reaction–based molecular identification. The amplification region was sequenced by Sangon Biotech (Shanghai, China) and submitted to GenBank (MW819983). BLAST analysis showed that the sequence was 100% identical to Pythium aphanidermatum. Pathogenicity tests were conducted 3 times, with 4 treatments and 2 controls each time. The plants treated were 6 months old. Then the hyphae growing on PDA for 7 days were cut into four pieces. Next, they were inoculated into the soil of the A. manihot. Negative control was inoculated only with PDA for 7 days ( Zhang et al. 2000). The plants were then placed in a greenhouse under 28°C, 90% relative humidity. After inoculated 20 to 30 days, the infected plants showed stalk rot, the same symptoms as observed on the original plants. The control plants didn’t display symptoms. Pythium aphanidermatum was re-isolated from infected stems and showed the same characteristics as described above and was identical in appearance to the isolates used to inoculate the plants. To our knowledge, this is the first report of Pythium aphanidermatum infecting A. manihot stem and causing stalk rot in China. It may become a significant problem for A. manihot. Preliminary management practices are needed for reducing the cost and losses of production.


Sign in / Sign up

Export Citation Format

Share Document